SANDIA REPORT

SAND2021-13267 Sandia
Printed October 2021 National
Laboratories

Xyce™ Parallel Electronic Simulator
Reference Guide, Version 7.4

Eric R. Keiter, Thomas V. Russo, Richard L. Schiek, Heidi K. Thornquist, Ting Mei,
Jason C. Verley, Peter E. Sholander, Karthik V. Aadithya, Joshua D. Schickling

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or
their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSE

Natlional Nuyclear Security Adminisfration

ABSTRACT

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document
to the Xyce Users’ Guide [1] . The focus of this document is (to the extent possible) exhaustively list device
parameters, solver options, parser options, and other usage details of Xyce. This document is not intended
to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users’ Guide [1]] .

ACKNOWLEDGMENTS

We would like to acknowledge all the code and test suite developers who have contributed to the Xyce
project over the years: Aaron Gibson, Alan Lundin, Antonio Gonzales, Ashley Meek, Bart van Bloemen
Waanders, Brad Bond, Brian Fett, Christina Warrender, David Baur, David Day, David Shirley, Deborah
Fixel, Derek Barnes, Eric Rankin, Erik Zeek, Gary Hennigan, Herman "Buddy" Watts, Jim Emery,
Jonathan Woodbridge, Jonathen Kwok, Keith Santarelli, Laura Boucheron, Lawrence Musson, Lon Waters,
Mary Meinelt, Michael Skoufis, Mingyu "Genie" Hsieh, Nicholas Johnson, Philip Campbell, Rachel
Campbell, Randall Lober, Rebecca Arnold, Regina Schells, Richard Drake, Robert Hoekstra, Roger
Pawlowski, Russell Hooper, Samuel Browne, Scott Hutchinson, Simon Zou, Smitha Sam, Steven Verzi,
Tamara Kolda, Timur Takhtaganov, and Todd Coffey.

Also, thanks to Hue Lai for the original typesetting of this document in IATEX.
Trademarks

Xyce Electronic Simulator™ and Xyce™ are trademarks of National Technology & Engineering Solutions
of Sandia, LLC (NTESS).

Contact Information
Address Electrical Models & Simulation Dept.
Sandia National Laboratories
P.O. Box 5800, MS 1177
Albuquerque, NM 87185-1177
Outside Sandia
World Wide Web http://xyce.sandia.gov
Email xyce@sandia.gov
Inside Sandia
World Wide Web https://info-ng.sandia.gov/xyce/
Email xyce-sandia@sandia.gov

yce

PARALLEL ELECTRONIC SIMULATOR

This document is copyright © 2002-2021 National Technology &
Engineering Solutions of Sandia, LL.C.

CONTENTS

[1._Introductioni 19
I O 7 TSP 20
[1.2. How to Use this GUIde]ooiiun e 20
[1.3. Typographical cOnventions|.ttt it 20

[2. Netlist Reference 21
R NetlistCommandsl. 22

.11 JAC(AC Analysis)|ottt 22
[2.1.2. .DATA (Data Table for sweeps)|. i 24
2.1.3. .DC (DC Sweep Analysis)|. ... i 25
[2.1.3.1. Linear SWeePS| ovvti it e 25
[2.1.3.2. Decade SWeeps|. cvvii i e 25
[2.1.3.3. OCtaVe SWEEPS| « « -« v ettt ettt e e e 25
[2.1.3.4. LISt SWEePS|. . . ottt e 26
[2.1.3.5. Data SWeeps|ot e 26
[2.1.4. .DCVOLT (Initial Condition, Bias point)| o .. 27
[2.1.5. .EMBEDDEDSAMPLING (Embedded Sampling)| 28
2.1.6. .END (End of CIrCUll)].o o vttt e e e e ettt e 31
2.1.7. .ENDS (End of Subcircuit)] 32
2.1.8. .FEFT (FFT Analysis)|t 33
2181 OPTIONS FFTFET MODE.......cottittit i 35
2182, Window Functions].ooiiiii 35
2.1.83. Additional FFT Metricsl. oo 36
184, Re-Measurel...........o i 37
[2.1.8.5. Compatibility Between OUTPUT and FFT Options| 37
[2.1.9. .FOUR (Fourier Analysis)| i i 38
[2.1.10. .FUNC (Function)|. e e e e e 40
[2.1.11. .GLOBAL (Global Node)|o e 42
[2.1.12. .GLOBAL_PARAM (Global parameter)]cooiiiiiiiiiniin... 43
[2.1.13. . HB (Harmonic Balance Analysis)| i 45
[2.1.14. . IC (Imtial Condition, Biaspoint)| i 46
P1.15. .INC or .INCLUDE or .INCL (INCIude file)] ... uvvureneenannnnnn. 47
2.1.16. .LIB (Library file)]t 48
RIT6.1 TIBcallstatementl.vvneee et 43
2.1.16.2. 1IB definition statement].ooouuniiiin i 48
2.1.17. .LIN (Linear Analysis)|ttt i 50
[2.1.18. .MEASURE or .MEAS (Measure output)[.............ouuvuunniuneenneennnn. 52
2.1.18.1. Measure Output]iiinmriee ettt iie e 63
R 1182, Measurement Windows|oovnnnitti e 64
[2.1.18.3. EXpression Support]c.ounmeiernen i iie i, 64
21184, Re-Measurel. 65

, an uvalifiers|. 66

[2.1.18.6. Additional Examples|........... 68
[2.1.18.7. Suppresssing Measure Output].ttt 69
[2.1.18:8. ERROR Functions (ERRT and ERRZ)].c.ovuiinienninnann.. 70
2.1.18.9. ERROR MeaSure]couuniiite it e 70
[2.1.18.10. Operator Support for AC Mode Measures|............................ 71
[2.1.18.11.Operator Support for NOISE Mode Measures| 71
[2.1.18.12. Behavior for Unsupported Modes and Types| 72
[2.1.18.13. Compatibility with .DATA|. 72
R.T.I8.T4.HSPICE Compatibility]o vttt et et ee e e 73

[2.1.19. .MEASURE (Continuous results)]ininin ... 75
[2.1.19.1. Measure Outpuf]ttt it e 77
[2.1.19.2. RISE, FALL and CROSS Qualifiers].vvuiieneiiaan . 78
[2.1.19.3. HSPICE Compatibility| 79

[2.1.20. .MEASURE FFT (Measure output for FFT)[............. 80
2.1.20.1. Measure Definitions].o vuueet i 83
21202, Re-Measure]. 83
[2.1.20.3. Additional Examples|........ ... 83

[2.1.21. .MODEL (Model Definition)| 85
RI2T T LEVEL Parametenl. . . .« ..o vveeeen et e et et e e eeeen e 86
[2.1.21.2. Model Binning| 86
[2.1.21.3. Model Interpolation|......... i 86

[2.1.22. _NODESET (Approximate Initial Condition, Biaspoint)| 89
[2.1.23. .NOISE (Noise Analysis)|ouuuiinii e e 90
[2.1.24. . 0P (Bias Point Analysis)| i 92
2.1.25. .OPTTONS Statements]. ottt et e et et e e e 93
[2.1.25.1. .OPTIONS DEVICE (Device Package Options)| 94
[2.1.25.2. .OPTIONS TIMEINT (Time Integration Options)| 96
[2.1.25.3. .OPTIONS NONLIN (Nonlinear Solver Options)| 99
[2.1.25.4. .OPTIONS LOCA (Continuation and Bifurcation Tracking Package Op- |

FLOMIS)| v et et e e et e e e e e e e e e e e 101

[2.1.25.5. .OPTIONS LINSOL (Linear Solver Options)| 102
[2.1.25.6. .OPTIONS LINSOL-HB (Linear Solver Options)| 105
[2.1.25.7. .OPTIONS LINSOL-AC (Linear Solver Options)| 106
[2.1.25.8. .OPTIONS OUTPUT (Output Options)[.........couuieeuneenneenn.... 106
[2.1.25.9. .OPTIONS RESTART (Checkpointing Options)|..................... 107
[2.1.25.10. .OPTIONS RESTART (Restarting Options)].c..couueenn.... 108
[2.1.25.11. .OPTIONS RESTART: special notes for use with two-level-Newton| 109
[2.1.25.12. .OPTIONS SAMPLES (Sampling options)|...............ccoooenn.... 109
[2.1.25.13. .OPTIONS EMBEDDEDSAMPLES (Embedded Sampling options)| 110
[2.1.25.14. .OPTIONS PCES (Fully intrusive PCE options)| 111
[2.1.25.15..OPTIONS SENSITIVITY (Direct and Adjoint Sensitivity Options)| ... 112
[2.1.25.16. .OPTIONS HBINT (Harmonic Balance Options)| 112
[2.1.25.17. .0OPTIONS DIST (Parallel Distribution Options)| 113
[2.1.25.18. .OPTIONS FFT (FFT Options)|........coouuiiiiniiiiin... 114
[2.1.25.19. .OPTIONS MEASURE (Measure Options)|couvnenn... 115
[2.1.25.20. .OPTIONS PARSER (Parser Options)|cooviviion... 116

[2.1.26. .PARAM (Parameter)|.ttt 117

[2.1.2°7. . PCE (Fully Intrusive Polynomial Chaos Expansion (PCE) Analysis)[............. 119

[2.1.28. .PREPROCESS REPLACEGROUND (Ground Synonym)|....................... 122
[2.1.29. .PREPROCESS REMOVEUNUSED (Removal of Unused Components)| 123
[2.1.30. .PREPROCESS ADDRESISTORS (Adding Resistors to Dangling Nodes)| 124
2.1.31. .PRINT (Print output)|oiuii e et e 125
2.1.31.1. Print AC Analysis|.t i e 133
[2.1.31.2. Print DC Analysis|oounii 134
[2.1.31.3. Print Harmonic Balance Analysis|. 135
[2.1.31.4. Print Noise Analysis| i i 137
[2.1.31.5. Print Transient Analysis| i 137
[2.1.31.6. Print Homotopy| i 138
[2.1.31.77. Print Sens1tvity|ot e 138
[2.1.31.8. Print Embedded Sampling Analysis|............ 140
[2.1.31.9. Print Intrusive PCE Analysis|. o 140
[2.1.31.10. Parameter Stepping|ottt e 141
RA31TI1.Prmnt Wildeardsl.o 143
2.1.31.12. Device Parameters and Internal Variablesoooooo0 144

[2.1.32. .RESULT (Printresults)]. o e e 146
[2.1.32.1. Example Netlist] i e 146

[2.1.33. . SAMPLING (Sampling UQ Analysis)|.covuuniin i 147
[2.1.34. . SAVE (Save operating point conditions)|.t 149
[2.1.35. . SENS (Compute DC, AC or transient SEnsitivities)].o vevneenneenneenn .. 150
[2.1.36. . STEP (Step Parametric Analysis)|.......... i, 152
[2.1.36.1. Linear SWeeps|vuriiiii e 152
[2.1.36.2. Decade SWeepSs|. ovii e e 154
[2.1.36.3. OCtave SWeePS| - « vt ottt et e e e 154
[2.1.36.4. LiSt SWeeps|.o oot 154
[2.1.36.5. Data Sweeps|covii i e 154

[2.1.37. .SUBCKT (SUDCITCULL)|ot e e e e e 156
[2.1.38. . TRAN (Transient Analysis)|. i i 158
2.1.39. Miscellaneous Commands|c.t ittt e e e 160
2.1.39.1. = (Comment)|ottt 160
2.1.39.2. ; (In-line Comment)|couniuninnine ettt 160
[2.1.39.3. + (Line Continuation)|ttt 160

[2.2. EXPIeSSIONS|ottt et e e e 161
[2.2.1. Expressions in . PARAM or . GLOBAL_PARAM Statements|...................... 167
[2.2.2. Expressions in .PRINT LINeS|.ottt 168
[2.2.3. Limitations on Using Complex Values in Expressions| 168
[2.2.4. Expressions for Device Instance and Model Parameters|......................... 169
[2.2.5. POLY @XPIesSIONS|ottt ettt ettt e e e e et e 170
[2.2.5.1. Voltage-controlled sources| 170
2252, Current-controfled sourceslt 170
2253, B SOUICES|. . ..ottt 171
R3DVICESl. . . ettt e e 173
[2.3.1. Voltage Nodes| e 179
2.3.1.1 lobal nodes|.o 179
2312, SubcircuitNodes| 179

[2.3.2. Legal Characters in Node and Device Names|. 180

[2.3.4. Capacitor]o 183
23,5, InductOrl.ot e 188
2 M I In LS| e 191
2.3, RESISIOM . . .ottt 198
2.3.8, DI0de] . ..o 204
[2.3.9. Independent Current SOUICE|.ottt e e 219
[2.3.10. Independent Voltage Source].......... i 224
RI3T1. Port Devicel. e 230
[2.3.12. Voltage Controlled Voltage Source| i i 231
2.3.13. Current Controlled Current SOUICEc.veun ettt 233
[2.3.14. Voltage Controlled Current Source] 234
[2.3.15. Current Controlled Voltage Source] i i 236
[2.3.16. Nonlinear Dependent Source| i i 237
[2.3.17. Bipolar Junction Transistor (BJT)[....... i 239
R3171. Thelevel IModell...... ... i 241
[2.3.17.2. VBIC Temperature Considerations|ccciveinn ... 243
R3I73 Tevel IBITTAbIEs]. . ..o .o ovee e e e 245
eve an ables JC)] I 247
eve ables X)) 257
eve ables (HICUM/LO)|. i, 260
3.17.7. Leve able (HICUM/L2) 265
23178, Level 504 and 505 BIT Tables MEXTRAM)|c.ovvvnnneennn.. 271
[2.3.18. Junction Field-Effect Transistor JEET)| 285
[2.3.19. Metal-Semiconductor FET (MESFET)|........ 289
1€ ect Transistor (MOSFET)| o i L 291
eve ables evel 1) ... 303
eve ables evel2) ..o 305
eve ables evel3) ..o 307
eve ables evelO) 309
eve ables (BSIM3)[.......... 311
.3.20.6. Leve ables SOD| oo 325
[2.3.20.7. Level 14/54 MOSFET Tables (BSIM4)[. 346
.8. Leve ables (VDMOS)| i 372
.9. Levels 70 and 7 MOSEFET Tables (BSIM-SOI 4.6.1 and 4.5.0) 376
.3.20.10.Leve ables version 6.1.1) 437
[2.3.20.11.Level 102 MOSFET Tables (PSP version 102.5)]covvvveeon.... 467
.Leve an ables version A 485
.Leve ables version 0.0 .o 558

.Leve an ables VErsions .0.0 an
LO8.0.0) . oo e 594
.15.Levels an ables version 2.0.0) 659
.Leve ables K version 1.1.0) 661
.3.20.17.Leve ables version 3.0.1)|...................... 668
[2.3.20.18.Level 10240 MOSFET Tables (L_UTSOI Version 102.4.0)] 676
[2.3.21. Lossy Transmission Line (LTRA)|........ i 691
[2.3.22. Voltage- or Current-controlled Switch|. 693
2.3.2 neri 1tChl . 696

[2.3.25. Lossless (Ideal) Transmission Line| 698
[2.3.26. Lumped Transmission Line| 700

eal Delay|. 702

[2.3.277.1. Delay device instance parameters|.coviiiininenenn... 703

[2.3.28. Behavioral Digital Devices|. i 704
[2.3.29. Y-Type Behavioral Digital Devices (Deprecated)| 709
2.3.30. Accelerated mass]. . . .« o vv vt 714
P33T Power Gridlot 715
2.3.32. Memristor DeviCe]ottt 726
2333, SubCIrcuit]o et 732

RA TCADDEVICES] - -« vttt et e et et e e e e e e 733
[2.4.1. Physical Models|. 743
2.4.1.1. Material Models and Parametersl 743

2.4.1.2. Effective Mass|t e 743

2.41.3. FElectron Effective Massl......... i 743

2414, HoleEffective Mass|. i 743

2.4.1.5. Intrinsic Carrier Concentration|.ovveeent ... 744

[2.4.1.6. Bandgap|o 744

[2.4.2. Mobility Models| e 746
2.4.2.1. Analytic Mobility|. 746

2.42.2. Arora Mobility| 747

[2.4.2.3. Carrier-Carrier Scattering Mobility| L. 748

[2.4.2.4. Lombardi Surface Mobility Model|. 750

[2.4.2.5. Edge Mobilities|t 752

[2.4.2.6. Boundary Conditions for Electrode Contacts| 753

2427 Neutral Contacts].vvunrit i e e 753

[2.4.2.8. Schottky Contacts|.uiiiini i e 754

2.42.9. Metal-Oxide-Semiconductor Contacts]. 758

2.42.10. NMOS DeVICE . ..o to ittt e e e 758

3. Command Line Arguments| 761
Hspice eXtensIons|o e 762

4. _Runtime Environment 764
i.1. Running Xycein Seriall. 764
4.2. Running Xycein Parallel] 764
4.3. Running Xyce on Sandia HPC and CEE Platforms|............. 764
. Setting Convergence Parameters for Xyce| 765
[5.1. Adjusting Transient Analysis Error Tolerances|............ 765
1.1. Setting and ABSTOL). 765

[5.2. Adjusting Nonlinear Solver Parameters (in transient mode)[. 766
6. Quick Reference for Users of Other SPICE Circuit Simulators| 767
Differences Between Xyce and PSpice]. 767
[6.1.1. Command Line Options|ouuittn et 767
[6.1.2. Device SUPPOTt]ot e 767

[6.1.3. OPTIONS SUPPOIT oo oottt e e e e e e e e e e 767

614 PROBE VS, PRINTI . ..ottt ittt ettt et et e e 769

[6.1.5. Converting PSpice ABM Models for Use in Xycel. ...t 769

[6.1.6. Usage of STEP Analysis|....... i i, 769

[6.1.6.1. Model Parameter Sweeps|cooi i i 769

[6.1.7. Behavioral Digital Devices|. 770

[6.1.8. Power Dissipation| e 770

[6.1.9. Dependent Sources with TABLE Syntax| it 770
.. 771

6.1.11. NODESET and IC Statements|.ttt 771

[6.1.12. Piecewise Limear SOUICES|t e 772

[6.1.13. AC OUIPUL . . . oottt e e e e et e e e e e e e e e 772

[6.1.14. Additional differences|.o 773

[6.1.15. Translating Between PSpice and Xyce Netlists| 775

|6.2. Daifferences Between Xyce and Other SPICE Stmulators|. 775
[6.3. DC Operating Point Calculation Failures in Xyce|............ 777
[6.3.1. Incompatible Voltage Constraints at Circuit Nodes|............... 177

[6.3.2. Multiple Voltage Constraints From Subcircuits or at Global Nodes| 778

16.3.3. NODESET and IC Statements 101 SUbCIrcults]. oo oo e oo e e 779

4 DC Path round for rrent Flow|. ... i 779

[6.3.5. Inductor Loops|.ot e 779

[6.3.6. Infinite Slope Transistions| i i 779

[6.3.7. Simulation SEttNEs|t e 779

[7. _Quick Reference for Microsoft Windows Users| 780
781
BI ASCITEOrMAlo oottt e e e e e e e e e 781
[8.2. Binary Format] 782
[8.3. Special NOteS|. . . .o\t 782
[References| 783
AP 0 786
|A. Third Party Licenses| 786

10

LIST OF FIGURES

[Figure 2-1. Model Binning Example] 86
[Figure 2-2. BJT model schematic|. 240
[Figure 2-3. VBIC thermal network schematic|. 243
[Figure 2-4. Lumped II Model for PowerGridBranch|........ 723
[Figure 2-5. Equivalent Circuit for PowerGridbusShunt|.......... 723
[Figure 2-6. Equivalent Circuit for PowerGridTransformer] oo, 725
[Figure 2-7. Neutral Contacts|.t e e e e 754
[Figure 2-8. Schottky Contact, N-TtyPe|ttt e e e e 755
[Figure 2-9. Schottky Contact, P-type].ot e e 756

11

LIST OF TABLES

[Table 1-1. Xyce typographical conventions.|.......... i, 20
[Table 2-1. .FFT Window Function Definitions (N = Number of Points).|........................ 35

able 2-2. , an upport in . L 67
[Table 2-3. Options for Device Package] 94
[Table 2-4. Options for Time Integration Package.| 96
[Table 2-5. Options for Nonlinear Solver Package.|............ 100
[Table 2-6. Options for Continuation and Bifurcation Tracking Package.|........................ 101
[Table 2-7. Options for Linear Solver Package.|......... 103
[Table 2-8. Options for Linear Solver Packagefor HB.| 105
[Table 2-9. Options for Sampling Package.| 109
[Table 2-10. Options for Embedded Sampling Package.|........... 110
[Table 2-11. Options for PCE Package.|. i e 111
[Table 2-12. Options for Sensitivity Package| o 112
[Table 2-13. Options for HB.| e e 112
[Table 2-14. Options for Parallel Distribution.|. 114
[Table 2-15. Options for FE L. . ..o 114
[Table 2-16. Options Fof MEASURE . .+ .+« .« e oo e e e e 115
[Table 2-17. Options for Parsing.|. i e 116
[Table 2-18. Print AC Analysis Type|. ... i e 133
[Table 2-19. Print DC Analysis Typel.o 134
[Table 2-20. Print HB Analysis Typel. i e 135
[Table 2-21. Print NOISE Analysis Type| ... e 137
[Table 2-22. Print Transient Analysis Type|. o i 137
[Table 2-23. Print Homotopy| oo 138
(lable 2-24. Print Sensitivities for TRAN and .DC| o . 139
(Table 2-25. Print Sensitivities for AC. 139
[Table 2-26. Print Transient Adjoint Sens1tivities|t i 139

able 2-27. Print nalysis Type|. ... 140
[Table 2-28. Print PCE Analysis Type|. e 140
[Table 2-31. OPErators|ottt ettt et et et e e e ettt et 161
Mable 2-32. Arithmetic Functions].o ot e 163
[Table 2-33. SPICE Compatibility Functions|. 167
[Table 2-34. Analog Device Quick Reference. | i i 173
[Table 2-34. Analog Device Quick Reference. | i i 174
[Table 2-35. Features Supported by Xyce Device Models| 175
[Table 2-36. Capacitor Device Instance Parameters|. i . 184
[Table 2-37. Capacitor Device Model Parameters|o, 185
Table 2- In r Device Instance Parameters|.oo i 190
Table 2- In r Device Model Parameters| o i 190
Table 2-4 nlinear Mutual In r Device Model Parameters|. 192

(Table 2-42. Resistor Device Model Parameters| oo i, 200
(lable 2-43. Resistor Device Instance Parameters|.............. i i i 201
(Table 2-44. Resistor Device Model Parameters| oo i 202
(Table 2-45. Diode Device Instance Parameters|. i 206
(Table 2-46. Diode Device Model Parameters| oo e 206
(Iable 2-47. JUNCAP200 Diode Device Instance Parameters| 207
(lable 2-48. JUNCAP200 Diode Device Model Parametersl 207
[Table 2-49. Diode level 200 Output Variables|. 210
[Table 2-50. ADMS DIODE CMC Device Instance Parameters|., 210

able 2-51. evice Model Parameters| oLl 211
[Table 2-52. Diode level 2002 Output Variables| 214
Mable 2-33. Pulse Parameters]o oottt e e e 220
[Table 2-54. Sine Parameters] oottt e e et e e e 220
[Table 2-55. Exponent Parameters|. i 220
[Table 2-56. Pattern Parameters]vuuttt ettt ettt et e 221
(Table 2-57. Piecewise Linear Parameters| i i i 222
[Table 2-58. Frequency Modulated Parameters| 223
Table 2- Pulse Parameters| 225
[(Table 2-60. Sine Parameters]ottt e e e e e 225
[Table 2-61. Exponent Parameters|. it i 225
(Table 2-62. Pattern Parameters|. i e 226
[Table 2-63. Piecewise Linear Parameters| i, 227
[Table 2-64. Frequency Modulated Parameters| i i 228
[Table 2-65. Bipolar Junction Transistor Device Instance Parameters|......................... ... 245
[Table 2-66. Bipolar Junction Transistor Device Model Parameters| 245
lable 2-67. VBIC 1.3 3T Device Instance Parameters|.o oL, 248
(Table 2-68. VBIC 1.3 3T Device Model Parameters| o .. 248
Table 2- BIC 1.3 4T Device Instance Parameters|. i iii., 253
(Table 2-70. VBIC 1.3 4T Device Model Parameters| o i 253
[Table 2-71. FBH HBT X v2.1 Device Instance Parameters| 257

able 2-72. v2.1 Device Model Parameters|. o i it 257
(Iable 2-73. HICUM L0 v1.32 Device Instance Parameters|. 260
lable 2-74. HICUM 1.0 v1.32 Device Model Parameters|, 260
[Table 2-75. BJT level 230 Output Variables| i i i 263
(lable 2-76. HICUM v2.4.0 Device Model Parameters| 265
[Table 2-77. BJT level 234 Output Variables| i e 269
(lable 2-78. MEXTRAM 504.12.1 Device Instance Parameters| 271
[Table 2-79. MEXTRAM 504.12.1 Device Model Parameters].ooiiiiiiii... 271
[Table 2-80. BJT level 504 Output Variables| i 274
[Table 2-81. MEXTRAM 504.12.1 with self heating Device Instance Parameters| 278
[Table 2-82. MEXTRAM 504.12.1 with self heating Device Model Parameters|................... 278
[Table 2-83. BJT level 505 Output Variables| 281
[Table 2-84. JFET Device Instance Parameters| i i i i, 286
(lable 2-85. JFET Device Model Parameters|. i 286
[Table 2-86. JFET Device Instance Parameters| i i i i, 287
(Table 2-87. JFET Device Model Parameters|. i 287
Table 2- MESFEET Device Instance Parameters|., 290

[Table 2-90. MOSFET level 1 Device Instance Parameters| 303
(Table 2-91. MOSFET level 1 Device Model Parameters|................ ..., 303
[Table 2-92. MOSFET level 2 Device Instance Parameters| 305
(lable 2-93. MOSFEET level 2 Device Model Parameters|............... oo, 305
[Table 2-94. MOSFET level 3 Device Instance Parameters| 307
(Table 2-95. MOSFEET level 3 Device Model Parameters|................ o i.. 307
[Table 2-96. MOSFET level 6 Device Instance Parameters| 309
(lable 2-97. MOSFEET level 6 Device Model Parameters|................ 309
[Table 2-98. BSIM3 Device Instance Parameters|. 311
[Table 2-99. BSIM3 Device Model Parameters|, 312
(lable 2-100. BSIM3 SOI Device Instance Parameters|., 325
lable 2-101. BSIM3 SOI Device Model Parameters L. 326
(Table 2-102. BSIMA4 Device Instance Parameters|.t 346
[Table 2-103. BSIM4 Device Model Parameters|ot 347
(Table 2-104. Power MOSFE'T Device Instance Parameters|.o ... 372
lable 2-105. Power MOSFET Device Model Parametersl L. 372
(Iable 2-106. BSIM-S014.6.1 Device Instance Parameters|. L. 377
(Table 2-107. BSIM-SOI4.6.1 Device Model Parameters| 378
[Table 2-108. MOSFET level 70 Output Variables| 407
Table 2-1 BSIM-SOI 4.5.0 Device Instance Parameters|., 408
(Table 2-110. BSIM-SOI1 4.5.0 Device Model Parameters|, 409

able 2-111. eve utput Variables| 435
[Table 2-112. BSIM6 Device Instance Parametersl.t 437
[Table 2-113. BSIM6 Device Model Parameters| i, 438
[Table 2-114. MOSFET level 77 Output Variables| 464

able 2-115. egacy .5 Device Instance Parameters| 467

able 2-116. egacy .5 Device Model Parameters|....................... 468

able 2-117. eve utput Variables| 479

[Table 2-118. PSP103VA MOSFET Device Instance Parameters!

[Table 2-119. PSP103VA MOSFET Device Model Parameters

able 2-120. eve utput Variables| 514
[Table 2-121. PSP103VA MOSFET with self-heating Device Instance Parameters|. 521
[Table 2-122. PSP103VA MOSFET with selt-heating Device Model Parameters| 522
Table 2-123. MOSFET leve utput Variables| 550

[Table 2-124, BSIM-CMG FINFET v110.0.0 Device Instance Parameters|
[Table 2-125. BSIM-CMG FINFET v110.0.0 Device Model Parameters

able 2-132. eve utput Variables| 656
Table 2-133. MVS ETSOI 2.0.0 Device Model Parameters
Table 2-134. MVS HEMT 2.0.0 Device Model Parameters

[Table 2-135. MVSG-HV HEMT MODEL Device Instance Parameters|
Table 2-136. MVSG-HV HEMT MODEL Device Model Parameters|

15

[Table 2-137. MOSFET level 2002 Output Variables|oiuiiiiii i, 666

(Table 2-138. EKV3 MOSFET Device Instance Parametersl.o oo oL 668
Table 2-139. EKV3 MOSFET Device Model Parameters
[Table 2-140. L_UTSOI MOSFET Device Instance Parameters]ouveueenuenneane ... 676
able 2-141. evice Model Parameters|............... 676
able 2-142. eve utput Variables| 688
[Table 2-143. Lossy Transmission Line Device Model Parameters|............................... 691
Table 2-144 ntroll itch Device Model Parameters|............. o ... 695
(lable 2-145. LIN Device Model Parameters|. i 697
(Table 2-146. Ideal Transmission Line Device Instance Parameters| 699
[Table 2-14°/. Lumped Transmission Line Device Instance Parameters| 700
[Table 2-148. Lumped Transmission Line Device Model Parameters|................. 701
[Table 2-149. Delay element Device Instance Parameters|. 703
[Table 2-150. Behavioral Digital Device Instance Parameters|............., 705
[Table 2-151. Behavioral Digital Device Model Parameters|. 705

[Table 2-152. DFF Truth-Table for DIGINITSTATE=3|
[Table 2-152. DFF Truth-Table for DIGINITSTATE=3
[Table 2-153. DII'CH Truth-Table for DIGINTTSTATE=3]
[Table 2-154. JKEF Truth-Table for DIGINITSTATE=3]

Table 2-162. MemristorTEAM Device Model Parameters| 729
[Table 2-163. Memristor Yakopcic Device Instance Parameters|............ 729
[Table 2-164. Memristor Yakopcic Device Model Parameters|. 729
(Table 2-165. MemristorPEM Device Instance Parametersl. o i, 730
(Table 2-166. MemristorPEM Device Model Parameters| oo oo 731
(Table 2-167. PDE Device Model Parameters| i 733
[Table 2-168. 1D PDE (level 1) Device Instance Parameters| 733
[Table 2-169. 2D PDE (level 2) Device Instance Parameters| 737
[Table 2-170. LAYER Composite Parameters|t 739
[Table 2-171. NODE Composite Parameters| i i 739
[Table 2-172. NODE Composite Parameters| . ..ottt i, 740
[Table 2-173. DOPINGPROFILES Composite Parameters]ouueenieneennenneane.n.. 740
[Table 2-174. REGION Composite Parameters| 741
[Table 2-175. Description of the flatx, flaty doping parameters| 742
(Table 2-176. Intrinsic Carrier Concentration Parameters|., 744
[Table 2-177. Bandgap CONStants|.o ottt e e e i e e e 745
[Table 2-178. Analytic Mobility Parameters|. i 747
[Table 2-179. Arora Mobility Parameters|........... i i 748
[Table 2-180. Carrier-Carrier Mobility Parameters| i 750
[Table 2-181. Lombardi Surface Mobility Parameters|. 752
(Table 2-182. Material workfunction values|. i 757
(Table 2-183. Electron affinities]. 757

[Table 3-1. List of Xyce command line arguments.|............ 761

[Table 6-1. Incompatibilities with PSpice.| 773
[Table 6-2. Incompatibilities with Other Circuit Simulators.| o oL, 776
[Table 7-1. Tssues for Microsoft Windows.l. i 780
[Table 8-1. Xyce ASCII rawfile format.| i, 781
[Table 8-2. Xyce binary rawfile format.| 782

17

1. INTRODUCTION

Welcome to Xyce”

The Xyce'" Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation
needs of the Sandia National Laboratories electrical designers. It is targeted specifically to run on
large-scale parallel computing platforms but also runs well on a variety of architectures including single
processor workstations. It also aims to support a variety of devices and models specific to Sandia needs.

19

1.1. Overview

This document is intended to complement the Xyce Users’ Guide [[1] . It contains comprehensive, detailed
information about a number of topics pertinent to the usage of Xyce. Included in this document is a netlist
reference for the input-file commands and elements supported within Xyce; a command line reference,
which describes the available command line arguments for Xyce; and quick-references for users of other
circuit codes, such as Orcad’s PSpice [2].

1.2. How to Use this Guide

This guide is designed so you can quickly find the information you need to use Xyce. It assumes that you
are familiar with basic Unix-type commands, how Unix manages applications and files to perform routine
tasks (e.g., starting applications, opening files and saving your work). Note that while Windows versions of
Xyce are available, they are command-line programs meant to be run under the Command Prompt, and are
used almost identically to their Unix counterparts.

1.3. Typographical conventions

Before continuing in this Reference Guide, it is important to understand the terms and typographical
conventions used. Procedures for performing an operation are generally indicated with the following
typographical conventions.

Notation Example Description

Commands entered from the
Typewriter text mpirun -np 4 keyboard on the command line
or text entered in a netlist.

Set nominal temperature using SPICE-type parameters used in
Bold Roman Font the TNOM option. models, etc.
Feature that is designed
Gray Shaded Text DEBUGLEVEL primarily for use by Xyce

developers.

Xyce [options]

[text in brackets] Optional parameters.

<netlist>
<text in angle Xyce [options] Parameters to be inserted by the
brackets> <netlist> user.
<object with K1 <ind. 1> [<ind. Parameter that may be multiply
asterisk>« n>x*] specified.

.PRINT TRAN Parameters that may only take

<TEXT1|TEXT2>

+ DELIMITER=<TAB|COMMA> specified values.

Table 1-1.: Xyce typographical conventions.

20

2. NETLIST REFERENCE

Chapter Overview

This chapter contains reference material directed towards working with circuit analyses in Xyce using the
netlist interface. Included are detailed command descriptions, start-up option definitions and a list of
devices supported by the Xyce netlist interface.

21

2.1, Netlist Commands

This section outlines the netlist commands that can be used with Xyce to setup and control circuit
analysis.

2.1.1. .AC (AC Analysis)

Calculates the frequency response of a circuit over a range of frequencies.

The .AC command can specify a linear sweep, decade logarithmic sweep, octave logarithmic sweep, or a
data table of multivariate values.

General Form .AC <sweep type> <points value>
+ <start frequency value> <end frequency value>

Examples .AC LIN 101 100Hz 200Hz
.AC OCT 10 1lkHz 16kHz
.AC DEC 20 1MEG 100MEG
.AC DATA=<table name>

Arguments and
Options sweep type

Must be LIN, OCT, DEC, or DATA as described below.

LIN Linear sweep
The sweep variable is swept linearly from the starting to the ending
value.

OCT Sweep by octaves
The sweep variable is swept logarithmically by octaves.

DEC Sweep by decades
The sweep variable is swept logarithmically by decades.

DATA Sweep values from a table
Sweep variables are applied based on the rows of a data table. This
format allows magnitude and phase to be swept in addition to frequency.
If using this format, no other arguments are needed on the . AC line.

points value
Specifies the number of points in the sweep, using an integer greater than or
equal to 1.

start frequency value

end frequency value
The end frequency value must not be less than the start frequency value, and
both must be greater than zero. The whole sweep must include at least one
point.

22

Comments

AC analysis is a linear analysis. The simulator calculates the frequency response by
linearizing the circuit around the DCOP bias point.

If specifying the sweep points using the DATA type, one can also sweep the
magnitude and phase of an AC source, as well as the values of linear model
parameters. However, unlike the use of DATA for . STEP and .DC, it is not possible
to sweep nonlinear device parameters. This is because changing other nonlinear
device parameters would alter the correct DCOP solution, and the AC sweep happens
after the DCOP calculation in the analysis flow. To sweep a nonlinear device
parameter on an AC problem, add a . STEP command to the netlist to provide an
outer parametric sweep around the analysis.

A .PRINT AC must be used to get the results of the AC sweep analysis. See Section
2.1.31

Some devices that may be expected to work in AC analysis do not at this time. This
includes, but is not limited to, the lossy transmission line (LTRA) and lossless
transmission line (TRA). The LTRA and TRA models will need to be replaced with
lumped transmission line models (YTRANSLINE).

Power calculations (P (<device>) and W (<device>) are not supported for any
devices for AC analysis. Current variables (e.g., I (<device>)) are only supported
for devices that have “branch currents” that are part of the solution vector. This
includes the V, E, H and L devices. It also includes the voltage-form of the B device.

23

2.1.2. .DATA (Data Table for sweeps)

User-defined data table, which can be used to specify sweep points for . AC, .DC, .NOISE or . STEP

General Form

.DATA [<name>]

+ <parameter name> [parameter name] *
+ <parameter value> [parameter value]x
.ENDDATA

Examples

.data test

+ rl r2

+ 8.0000e+00 4.0000e+00
+ 9.0000e+00 4.0000e+00
.enddata

Arguments and
Options

name
Name of the data table.

parameter name
Name of sweep parameter. This can be a device instance parameter, a device
model parameter or a user-defined parameter specified using
.GLOBAL_PARAM or a globally scoped . PARAM statement.

parameter value
Value of sweep parameter for the given sweep point. This must be a double
precision number. Each row of the table corresponds to a different sweep
step, so multiple parameters can be changed simultaneously.

Comments

Each column of a data table corresponds to a different parameter, and each row
corresponds to a different sweep point.

If using . DATA with .DC or . STEP, then any instance parameter, model parameter,
or user-defined parameter in the global scope.

However, if using .DATA with .AC or . NOISE, then one can sweep the magnitude
and phase of an AC source, and linear model parameters (such as resistance and
capacitance) in addition to the traditional AC sweep variable, frequency. Parameters
associated with nonlinear models (like transistors) are not allowed. This is because
AC analysis is a linear analysis, performed after the DCOP calculation. Changing
nonlinear device model parameters would result in a different DCOP solution, so
changing them during the AC (or NOISE) analysis phase is not valid.

Another caveat, for both . AC and . NOISE, is that all of the frequency values in the
data table must be positive. If . DATA is used with . NOISE then the integrals for the
total input noise and total output noise will only be calculated, and sent to stdout, if
the frequencies in the data table are monotonically increasing.

24

2.1.3. .Dc (DC Sweep Analysis)

Calculates the operating point for the circuit for a range of values. Primarily, this capability is applied to
independent voltage sources, but it can also be applied to most device parameters. Note that this may be
repeated for multiple sources in the same .DC line.

The .DC command can specify a linear sweep, decade logarithmic sweep, octave logarithmic sweep, a list
of values, or a data table of multivariate values.

2.1.3.1. Linear Sweeps

General Form .DC [LIN] <sweep variable name> <start> <stop> <step>
+ [<sweep variable name> <start> <stop> <step>]=x*

Examples .DC LIN V1 5 25 5
.DC VIN -10 15 1
.DC R1 0 3.5 0.05C1 0 3.5 0.5

Comments A .PRINT DC must be used to get the results of the DC sweep analysis. See Section
2131

A . OP comand will result in a linear DC analysis if there is no .DC specified.

If the stop value is smaller than the start value, the step value should be negative. If a
positive step value is given in this case, only a single point (at the start value) will be
performed, and a warning will be emitted.

2.1.3.2. Decade Sweeps

General Form .DC DEC <sweep variable name> <start> <stop> <points>
+ [DEC <sweep variable name> <start> <stop> <points>]«*

Examples .DC DEC VIN 1 100 2
.DC DEC R1 100 10000 3 DEC VGS 0.001 1.0 2

Comments The stop value should be larger than the start value. If a stop value smaller than the
start value is given, only a single point at the start value will be performed, and a
warning will be emitted. The points value must be an integer.

2.1.3.3. Octave Sweeps

General Form .DC OCT <sweep variable name> <start> <stop> <points>
+ [OCT <sweep variable name><start> <stop> <points>]...

25

Examples .DC OCT VIN 0.125 64 2
.DC OCT R1 0.015625 512 3 OCT C1 512 4096 1

Comments The stop value should be larger than the start value. If a stop value smaller than the
start value is given, only a single point at the start value will be performed, and a
warning will be emitted. The points value must be an integer.

2.1.3.4. List Sweeps

General Form .DC <sweep variable name> LIST <val> <val> <val>x
+ [<sweep variable name> LIST <val> <val>x]x
Examples .DC VIN LIST 1.0 2.0 5.0 6.0 10.0

.DC VDS LIST O 3.5 0.05 VvGS LIST O 3.5 0.5
.DC TEMP LIST 10.0 15.0 18.0 27.0 33.

o

2.1.3.5. Data Sweeps

General Form .DC DATA=<data table name>

Examples .DC data=resistorValues

.data resistorValues

+ rl r2

+ 8.0000e+00 4.0000e+00
+ 9.0000e+00 4.0000e+00
.enddata

26

2.1.4. .DcVOLT (Initial Condition, Bias point)

The .DCVOLT sets initial conditions for an operating point calculation. It is identical in function to the
. IC command. See section [2.1.14]for detailed guidance.

27

2.1.5. . EMBEDDEDSAMPLING (Embedded Sampling)

Calculates a full analysis (for .DC or . TRAN only) over a distribution of parameter values. Embedded
sampling operates similarly to . STEP, except that the parameter values are generated from random
distributions rather than sweeps, and that the loop over parameters happens at the inner-most part of the
calculation, so all samples are propagated simultaneously. If used in conjunction with projection-based
PCE methods, then the sample points are not based on random samples. Instead they are based on the
quadrature points.

General Form .EMBEDDEDSAMPLING

param=<parameter name>, [parameter name] *
type=<parameter type>, [parameter type]x*
means=<mean>, [mean] %

std_deviations=<standard deviation>, [standard
deviation]*

+ lower_bounds=<lower bound>, [lower bound] *

+ upper_bounds=<upper bound>, [upper bound]

+ alpha=<alpha>, [alpha]*

+ beta=<beta>, [beta] *

+
.
+
+

Examples .EMBEDDEDSAMPLING
param=R1
type=normal
means=3K
std_deviations=1K

+ o+ + o+

.EMBEDDEDSAMPLING
+ param=R1,R2

+ type=uniform,uniform
+ lower_bounds=1K, 2K

+ upper_bounds=5K, 6K
.EMBEDDEDSAMPLING

+ useExpr=true

.options EMBEDDEDSAMPLES numsamples=10000
.options EMBEDDEDSAMPLES numsamples=25000
+ OUTPUTS={R1:R}, {V(1)}

+ SAMPLE_TYPE=MC

.options EMBEDDEDSAMPLES numsamples=1000
+ MEASURES=maxSine

+ SAMPLE_TYPE=LHS

.options embeddedsamples numsamples=30
+ covmatrix=le6,1.0e-3,1.0e-3,4e-14

28

+ OUTPUTS={V (1)}, {R1:R}, {Cl:C}

Arguments and
Options

param
Names of the parameters to be sampled. This may be any of the parameters
that are valid for . STEP, including device instance, device model, or global
parameters. If more than one parameter, then specify as a comma-separated
list.

type
Distribution type for each parameter. This may be uniform, normal or
gamma. If more than one parameter, then specify as a comma-separated list.

means
If using normal distributions, the mean for each parameter must be specified.
If more than one parameter, then specify as a comma-separated list.

std_deviations
If using normal distributions, the standard deviation for each parameter must
be specified. If more than one parameter, then specify as a comma-separated
list.

lower bounds
If using uniform distributions, the lower bound must be specified. This is
optional for normal distributions. If used with normal distributions, may
alter the mean and standard deviation. If more than one parameter, then
specify as a comma-separated list.

upper_bounds
If using uniform distributions, the upper bound must be specified. This is
optional for normal distributions. If used with normal distributions, may
alter the mean and standard deviation. If more than one parameter, then
specify as a comma-separated list.

alpha
If using gamma distributions, the alpha value for each parameter must be
specified. If more than one parameter, then specify as a comma-separated
list.

beta
If using gamma distributions, the beta value for each parameter must be
specified. If more than one parameter, then specify as a comma-separated
list.

useExpr
If this argument is set to true, then the sampling algorithm will set up random
inputs from expression operators such as AGAUSS and AUNIF. In this case
it will also ignore the list of parameters on the . EMBEDDEDSAMPLING
command line. For a complete description of expression-based random
operators, see the expression documentation in section [2.2]

29

Comments

In addition to the . EMBEDDEDSAMPLING command, this analysis requires a
.options EMBEDDEDSAMPLES command as well. The . EMBEDDEDSAMPLING
command specifies parameters and their attributes, either using the useExpr option,
or with comma-separated lists. The .options EMBEDDEDSAMPLES command
specifies analysis options, including the number of samples, the type of sampling
(LHS or MC) and the outputs and/or measures for which to compute statistics. This
line also allows one to specify a non-intrusive Polynomial Chaos Expansion (PCE)
method (either regression or projection PCE). To see the details of the

.options EMBEDDEDSAMPLES command , see table2-10

On the . EMBEDDEDSAMP LING command line, if not using useExpr, parameters
and their attributes must be specified using comma-separated lists. The
comma-separated lists must all be the same length.

The .PRINT ES command provides output based on the contents of those
print-lines, and also the NUMSAMPLES and OUTPUT arguments on the . OPTIONS
EMBEDDEDSAMPLES line. If the OUTPUT_SAMPLE_STATS argument on a
.PRINT ES line is set to “true” then the statistics for the MEAN, MEANPLUS,
MEANMINUS, STDDEV and VARIANCE will be output for each variable in the
OUTPUT argument. If the OUTPUT_ALL_ SAMPLES argumenton a .PRINT ES
line is set to “true” then the values of all NUMSAMPLES samples, for each variable
requested in the OUTPUTS argument, will be output.

30

2.1.6. . END (End of Circuit)

Marks the end of netlist file.

31

2.1.7. .ENDS (End of Subcircuit)

Marks the end of a subcircuit definition.

32

2.1.8. .FFT (FFT Analysis)

Performs Fast Fourier Transform analysis of transient analysis output.

General Form .FFT <ov> [NP=<value>] [WINDOW=<value>] [ALFA=<value>]
+ [FORMAT=<value>] [START=<value>] [STOP=<value>]
+ [FREQ=value] [FMIN=value] [FMAX=value]

Examples FET vi(1)
FET v(1,2) NP=512 WINDOW=HANN
FET {v(3)-v(2)} START=1 STOP=2

Arguments and

Options . . .
ov The desired solution output to be analyzed. Only one output variable can be

specified on a . FF'T line. However, multiple . FFT lines with the same
output variable but, for example, different windowing functions may be used
in a netlist. The available outputs are:

* V(<circuit node>) the voltage at <circuit node>

* V(<circuit node>,<circuit node>) to output the voltage
difference between the first <circuit node> and second
<circuit node>

* I (<device>) the current through a two terminal device

e I<lead abbreviation> (<device>) the current into a
particular lead of a three or more terminal device (see the Comments,
below, for details)

* N(<device parameter>) aspecific device parameter (see the

individual devices in Section[2.3|for syntax)

NP The number of points in the FFT. This value must be a power of 2. If the
user-entered value is not a power of two then it will be rounded to the
nearest power of 2. The minimum allowed value of NP is 4. The default
value is 1024.

WINDOW
The windowing function that will be applied to the sampled waveform
values. The allowed values are as follows, where table [2-T] gives their exact
definitions:

* RECT (or RECTANGULAR) = rectangular window (default)
* BART (or BARTLETT) = Bartlett (triangular) window

* BARTLETTHANN = Bartlett-Hann window

* BLACK = Blackman window

* BLACKMAN = “Conventional Blackman” window

* HAMM (or HAMMING) = Hamming window

33

* HANN (or HANNING) = Hanning window

e HARRIS (or BLACKMANHARRIS) = Blackman-Harris window

* NUTTALL = Nuttall window

* COSINE2 = Power-of-cosine window, with exponent 2.

* COSINE4 = Power-of-cosine window, with exponent 4.

* HALFCYCLESINE = Half-cycle sine window

* HALFCYCLESINES3 = Half-cycle sine window, with exponent 3.
* HALFCYCLESINEG6 = Half-cycle sine window, with exponent 6.

ALFA
This parameter is supported for HSPICE compatibility. It currently has no
effect though, since the GAUSS and KAISER windows are not supported.

FORMAT
The allowed values are NORM and UNORM. If NORM is selected then the
magnitude values will be normalized to the largest magnitude. If UNORM is
selected then the actual magnitude values will be output instead. The default
value for this parameter depends on the . OPTIONS FFT FFT_MODE
setting. If FFT_MODE=0, which is the default options setting, then the
default value is NORM. If FFT_MODE=1 then the default value is UNORM.

START
The start time for the FFT analysis. The default value is the start time for the
transient analysis. FROM is an allowed synonym for START.

STOP
The end time for the FFT analysis. The default value is the end time for the
transient analysis. TO is an allowed synonym for STOP.

FREQ
The “first harmonic” of the frequencies provided in the output file. The
default value for FREQis 1/ (STOP - START).If FREQ is given then it
is rounded to the nearest integer multiple of the default value. The Xyce
Users’ Guide [1]] provides an example.

FMIN
This parameter can use to adjust the harmonics included in the “additional
metrics” defined in Section It has a default value of 1.

FMAX
This parameter can use to adjust the harmonics included in the “additional
metrics” defined in Section [2.1.8.3| It has a default value of NP /2.

Comments Multiple . FFT lines may be used in a netlist. All results from FFT analyses will be
returned to the user in a file with the same name as the netlist file suffixed with
. £ £t X where X is the step number.

<lead abbreviation> is a single character designator for individual leads on a
device with three or more leads. For bipolar transistors these are: ¢ (collector), b

34

(base), e (emitter), and s (substrate). For mosfets, lead abbreviations are: d (drain), g
(gate), s (source), and b (bulk). SOI transistors have: d, g, s, e (bulk), and b (body).
For PDE devices, the nodes are numbered according to the order they appear, so lead
currents are referenced like [1(<device>), [2(<device>), etc.

For this analysis, the phase data is always output in degrees.

In Xyce, WINDOW=TRIANGULAR is not an allowed synonym for WINDOW=BART.
This is to avoid confusion with other analysis packages such as SciPy and Matlab.

2.1.8.1. .OPTIONS FFT FFT_MODE

The setting for . OPTIONS FFT FFT_MODE is used to control whether the Xyce FFT processing and
output are more compatible with HSPICE (0) or Spectre (1). This setting affects the format of the window
functions, the conversion from two-sided to one-sided results, and whether the default output for the
magnitude values is normalized, or not. The default setting for FFT_MODE is 0.

If FFT_MODE=0 then symmetric window functions are used. If FFT_MODE=1 then periodic window
functions are used. The next subsection provides more details on that difference.

If FFT_MODE=0 then the two-sided to one-sided conversion doubles the magnitudes of the 1,2,...,NP
harmonics. If FFT_MODE=1 then that conversion only doubles the magnitudes of the 1,2,...,(NP-1)
harmonics.

The default value for the FORMAT parameter depends on the .OPTIONS FFT FFT_MODE setting. If
FFT_MODE=0 then the default value for that parameter is NORM. If FFT_MODE=1 then the default value is
UNORM.

2.1.8.2. Window Functions

Table 2-1] gives the definitions of the window functions implemented in Xyce. For HSPICE compatibility,
the BLACK window type is actually the “-67 dB Three-Term Blackman-Harris window” [3] rather than the
“Conventional Blackman Window” used by Spectre, Matlab and SciPy. The Convential Blackman Window
can be selected with the B1IACKMAN window type instead. The definition of the BART window type [4]
was chosen to match Spectre, Matlab and SciPy. The Xyce definition may differ from HSPICE.

As mentioned in in the previous subsection, the choice of symmetric vs. periodic window functions can be
selected via the use of .OPTIONS FFT FFT_MODE=<0|1>. If symmetric windows are used then

L =N —1 in the formulas in table where N is the number of points in the FFT. If periodic windows are
used then L = N.

Table 2-1. .FFT Window Function Definitions (N = Number of Points).

Value Description ‘ Definition
RECT Rectangular w(i)=1, for0<i<N
21 . .
BART Barlett [4] wi)=4 L ifi <0.5-(N—1)
2— %, otherwise
w(i) =
BARTLETTHANN | Bartlett-Hann [3] 0.62—0.48- |1 —0.5|+0.38-cos(27- (1 —0.5)), for0<i<N

35

Value Description Definition

HANN Hanning [4] w(i) = sin?(Z), for0<i<N
HAMM Hamming [4] w(i) = 0.54—0.46 - cos(3%), for0<i<N
BLACKMAN Conventional w(i) = 0.42—0.5 - cos(2E) +0.08 - cos(4E), for0<i<N

Blackman window” [3]]

67 dB Three-Term w(i) = 0.42323 — 0.49755 - cos() +0.07922-

BLACK Blackman-Harri
Wii(;onvzla[% I ans cos(H), for0<i<N
-92 dB Four-Term N . . 2mi . Amiy _
HARRIS Blackman-Harris :)VE)? 1_62§)3ci§(765m)0t§)§2()9<610s<(1<‘7)+0.14128 cos(L)
window [J3]] ’ Lr -
NUTTALL E/}’Eiiiﬁ?éfg‘ﬁiﬂe w(i) = 0.3635819 — 0.4891775 - cos(22) +0.1365995 -

(Blackman-Nuttall) [3] cos(*) —0.0106411 - cos(®Z), for0<i<N

Power-of-cosine

COSINE2 window, with exponent | w(i) = 0.5—0.5-cos(#), for0<i<N
2
Power-of-cosine _

COSINE2 window, with exponent | w(i) =0.375—0.5- cos() 4+0.125- cos(4L’), for0<i<N
4

HALFCYCLESINE | Half-cycle sine window | w(i) = sin(Z)

Half-cycle sine window,

HALFCYCLESINE3 | .
with exponent 3

Half-cycle sine window,

HALFCYCLESINEG6 | .
with exponent 6

2.1.8.3. Additional FFT Metrics

The following additional metrics will be sent to stdout if . OPTIONS FFT FFTOUT=1 is used in the
netlist. These definitions are also used by the corresponding measure types on . MEASURE FFT lines.

Define the integer index of the “first harmonic” (fj) as follows (where it has a default value of 1 and the
ROUND() function rounds to the nearest integer):

STOP—START

o= ROUND(AREQ), if FREQ given
o7 1, otherwise

Finally, define magli] as the magnitude of the FFT coefficient at index i, and N as the number of points in
the FFT.

The Signal to Noise-plus-Distortion Ratio (SNDR) is calculated as follows, where the summation in the
denominator includes all of the frequencies except for the first harmonic frequency fy:

_ [fo] ; :
SNDR = ZO'ZOglo(sqrt(Z%i;W)’ for1 <i<0.5-N,andi# fp

The Effective Number of Bits (ENOB) is calculated as follows, where the units is “bits”:

_ SNDR—1.76
ENOB = =555

For the Signal to Noise Ratio (SNR) metric define the upper frequency limit for the SNR metric as follows,
with the caveat that if f, is less than fj then its value is set to fy:

36

STOP—START

= ROUND(AMAX_) if FMAX given
271 05-N, otherwise

The SNR is then calculated as follows, where the summation in the denominator only uses indexes that are
either not an integer-multiple of fy or that are greater than the upper frequency limit of f,. (Note: for the
default case of fy =1 and FMAX not given there are no “noise frequencies’.)

SNR = 20-loglo(m), fori> f> or i%fy#0

For the Total Harmonic Distortion (THD) metric define the upper frequency limit (f>) in the summation in
the numerator as:

= { ROUND (4% o), if FMAX given

0.5 N, otherwise
The THD is then calculated using only the indexes that are multiples of fy. So, if fp=2 then the summation
in the numerator would only include indexes 4,6,8,etc.
THD = 20-loglo(W), for2-fy <i< f»,and i%fp =0
For Spurious Free Distortion Ratio (SFDR) metric define the upper and lower frequency limits (f, and f;)
considered in the denominator of the calculation as:

= ROUND (54X), if FMAX given
271 05-N, otherwise
and:
ROUND (ol —), if FMIN given
fi=1< fo, if FMIN not given, and f> > fo

1, if FMIN not given, and f> < fy
The SFDR is then calculated as:

SFDRzZOJoglO(#V%), for fi <i< f»,and i # fo

2.1.8.4. Re-Measure

Xyce can re-calculate (or re-measure) the values for . FF'T statements using existing Xyce output files.
Section[2.1.18.4] discusses this topic in more detail for both . MEASURE and . FFT statements. One
additional caveat is that FFT_ACCURATE is set to O during the re-measure operation. This should have no
impact of the accuracy of the re-measured results if the output file was previously generated with
FFT_ACCURATE set to 1.

2.1.8.5. Compatibility Between OUTPUT and FFT Options

Some .OPTIONS OUTPUT settings are incompatible with using the default setting of . OPTIONS FFT
FFT_ACCURATE=1.The use of .OPTIONS OUTPUT OUTPUTTIMEPOINTS is compatible. However,
the use of .OPTIONS OUTPUT INITIAL_INTERVAL is not. In that latter case, . OPTIONS FFT
FFT_ACCURATE will be automatically set to 0.

37

2.1.9. . FOUR (Fourier Analysis)

Performs Fourier analysis of transient analysis output.

General Form .FOUR <freg> <ov> [oV]*

Examples .FOUR 100K v (5)
.FOUR 1MEG v (5,3) v (3)
.FOUR 20MEG SENS
.FOUR 40MEG ({v(3)-v(2)}

Arguments and

Options freq

The fundamental frequency used for Fourier analysis. Fourier analysis is
performed over the last period (1 / freq) of the transient simulation. The
DC component and the first nine harmonics are calculated.

ov The desired solution output, or outputs, to be analyzed. Fourier analysis can
be performed on several outputs for each fundamental frequency, freq. At
least one output must be specified in the . FOUR line. The available outputs
are:

* V(<circuit node>) the voltage at <circuit node>

* V(<circuit node>,<circuit node>) to output the voltage
difference between the first <circuit node> and second
<circuit node>

* I (<device>) the current through a two terminal device

* I<lead abbreviation> (<device>) the current into a
particular lead of a three or more terminal device (see the Comments,
below, for details)

* N(<device parameter>) a specific device parameter (see the
individual devices in Section[2.3|for syntax)

 SENS transient direct sensitivities (see Section [2.1.35] for more details
about setting up the . SENS command)

Comments Multiple . FOUR lines may be used in a netlist.

All results from Fourier analysis will be returned to the user in a file with the same
name as the netlist file suffixed with . four#, where the suffixed number (#) starts at
0 and increases for multiple iterations (. STEP iterations) of a given simulation.

<lead abbreviation> is a single character designator for individual leads on a
device with three or more leads. For bipolar transistors these are: ¢ (collector), b
(base), e (emitter), and s (substrate). For mosfets, lead abbreviations are: d (drain), g
(gate), s (source), and b (bulk). SOI transistors have: d, g, s, e (bulk), and b (body).

38

For PDE devices, the nodes are numbered according to the order they appear, so lead
currents are referenced like I1(<device>), I12(<device>), etc.

For this analysis, the phase data is always output in degrees.

39

2.1.10. . FUNC (Function)

User defined functions that can be used in expressions appearing later in the same scope as the . FUNC

statement.

General Form

.FUNC <name> ([arg]x*) {<body>}

Examples

.FUNC E (x) {exp(x)}

.FUNC DECAY (CNST) {E(-CNST*TIME) }
.FUNC TRIWAV (x) {ACOS(COS(x))/3.14159}
.FUNC MIN3(A,B,C) {MIN(A,MIN(B,C))}

Arguments and
Options

name
Function name. Functions cannot be redefined and the function name must
not be the same as any of the predefined functions (e.g., SIN and SQRT).

arg
The arguments to the function. . FUNC arguments cannot be node names.
The number of arguments in the use of a function must agree with the
number in the definition. Parameters, TIME, FREQ, and other functions are
allowed in the body of function definitions. Two constants EXP and P T
cannot be used a argument names. These constants are equal to e and 7,
respectively, and cannot be redefined.

body
May refer to other (previously defined) functions; the second example,
DECAY, uses the first example, E.

Comments

The <body> of a defined function is handled in the same way as any math
expression; it must be enclosed in curly braces .

The scoping rules for functions are:

e If a . FUNC, statement is included in the main circuit netlist, then it is accessible
from the main circuit and all subcircuits.

* .FUNC statements defined within a subcircuit are scoped to that subciruit
definition. So, their functions are only accessible within that subcircuit
definition, as well as within “nested subcircuits™ also defined within that
subcircuit definition.

Additional illustative examples of scoping are given in the “Working with Subcircuits
and Models” section of the Xyce Users’ Guide [1] .

Rules for function names are as follows:

* They should start with a letter or the underscore (_) character, for maximal
compatibilty with other Spice-like simulators. The hash (#) at (@) and backtick
(') symbols also work, but they are not reserved characters.

40

* These arithmetic operators $ ~ & ~ * — + < >/ | should not be used anywhere
in function names, as they cause problems with expression parsing.

e Parentheses (“("” or “)”), braces (“{” or “}”), commas, semi-colons, double
quotes and single quotes are also not allowed.

41

2.1.11. . GLOBAL (Global Node)

The . GLOBAL command provides another way to designate certain nodes as global nodes, besides starting
their node name with the two characters “$G” as discussed in section [2.3.1] A typical usage of such global
nodes is to define a VDD or VSS signal that all subcircuits need to be able to access, but without having to
provide VSS and VDD input nodes to every subcircuit.

General Form .GLOBAL <node>

Examples .GLOBAL gl
.subckt rsub a b
Rab a Db 2
* since node Gl is global, it may be used here without
* being listed on the .subckt line
Rbg Gl Db 3
.ends

Comments The name of the global node can be any legal node name, per section[2.3.2]

42

2.1.12.

. GLOBAL_PARAM (Global parameter)

User-defined global parameter that can be used in expressions throughout the netlist.

General Form

.GLOBAL_PARAM [<name>=<value>]*

Examples .GLOBAL_PARAM T={27+100xtime}
name
value
The name of a global parameter and its wvalue. The
value may be an expression.
Comments A .PARAM defined in the top level netlist is equivalent to a . GLOBAL_PARAM, and

they can be combined as needed. Thus, you may use parameters defined by . PARAM
in expressions used to define global parameters, and you may also use global
parameters in . PARAM definitions. However, a . GLOBAL_PARAM can only depend
on .PARAM parameter from the top level circuit scope.

Like . PARAM parameters, . GLOBAL_PARAM may depend on time dependent
quantities in the circuit. They may also be frequency dependent. They cannot,
however, be dependent on solution variaables such as voltage nodes.

To load an external data file with time voltage pairs of data on each line into a global
parameter, use this syntax:

.GLOBAL_PARAM extdata = {tablefile("filename") }

or

.GLOBAL_ PARAM extdata {table ("filename") }

where £ilename would be the name of the file to load. Other interpolators that can
read in a data table from a file include fasttable,spline, akima, cubic,
wodicka and b1i. See[2.2]for further information.

There are several reserved words that may not be used as names for parameters. These
reserved words are:

e Time

e F'reqg

* Hertz
eVt

e Temp

e Temper

e GMIN

43

Global parameters are accessible, and have the same value, throughout all levels of the
netlist hierarchy. It is not legal to redefine global parameters in different levels of the
netlist hierarchy. Also, global parameters can only be defined in the top level circuit
scope. Parameters defined inside of subcircuits must be of the . PARAM type.

44

2.1.13. . HB (Harmonic Balance Analysis)

Calculates steady states of nonlinear circuits in the frequency domain.

General Form

.HB <fundamental frequencies>

Examples

.HB 1e4

.hb 1led 2e2

Arguments and

Options fundamental frequencies
Sets the fundamental frequencies for the analysis.
Comments Harmonic balance analysis calculates the magnitude and phase of voltages and

currents in a nonlinear circuit. Use a . OPTIONS HBINT statement to set additional
harmonic balance analysis options.

The .PRINT HB statement must be used to get the results of the harmonic balance
analysis. See section[2.1.31]

Some devices that may be expected to work in HB analysis do not at this time. This
includes some use cases of B sources (but not all). A time-dependent B source will
not work with HB. However, a B source that is purely dependent (such as a nonlinear
resistor) will work. This same guidance applies to the E,F,G, and H dependent sources.

45

2.1.14. . IC (Initial Condition, Bias point)

The . IC/.DCVOLT command sets initial conditions for operating point calculations. These operating
point conditions will be enforced the entire way through the nonlinear solve. Initial conditions can be given
for some or all of the circuit nodes.

As the conditions are enforced for the entire solve, only the nodes not specified with . IC statements will
change over the course of the operating point calculation.

Note that it is possible to specify conditions that are not solvable. Consult the Xyce Users’ Guide [1]] for
more guidance.

General Form .IC V(<node>)=<value>
.IC <node> <value>
.DCVOLT V (<node>)=<value>
.DCVOLT <node> <value>

Examples .IC V(2)=3.1
.IC 2 3.1
.DCVOLT V(2)=3.1
.DCVOLT 2 3.1

Comments The . IC capability can only set voltage values, not current values.

The . IC capability can not be used within subcircuits to set voltage values on global
nodes.

46

2.1.15. .INC or .INCLUDE or .INCL (Include file)

Include specified file in netlist.

The file name can be surrounded by single or double quotes, ’filename’ or "filename", but this is not
necessary. The directory for the include file is assumed to be the execution directory unless a full or relative
path is given as a part of the file name.

General Form .INC <include file name>
.INCLUDE <include file name>
.INCL <include file name>

Examples .INC models.lib
.INC "models.lib’
.INC "models.lib"
.INCLUDE models.lib
.INCLUDE ’"models.lib’
.INCLUDE "path_to_library/models.lib"

Comments If <include file name> uses an absolute path then that path is used. Otherwise, the
search-path order for <include file name> is:

* Relative to the directory that contains <include file name>.
* Relative to the directory that contains the file with the top-level netlist.

* Relative to the Xyce execution directory.

47

2.1.16. .LIB (Library file)

The . LIB command is similar to . INCLUDE, in that it brings in an external file. However, it is designed to
only bring in specific parts of a library file, as designated by an entry name. Note that the Xyce version of
. LIB has been designed to be compatible with HSPICE [3], not PSpice [6]].

There are two forms of the . LIB statement, the call and the definition. The call statement reads in a
specified subset of a library file, and the definition statement defines the subsets.

2.1.16.1. .LIB call statement

General Form .LIB <file name> <entry name>

Examples .LIB models.lib nom
.LIB "models.lib’ low
.LIB "models.lib" low
.LIB "path/models.lib" high

Arguments and
Options file name
Name of file containing netlist data. Single or double quotes (" or /) may be

used around the file name.

entry name
Entry name, which determines the section of the file to be included. These
sections are defined in the included file using the definition form of the
. LIB statement.

The library file name can be surrounded by quotes (single or double), as in "path/filename" but this is not
necessary. The directory for the library file is assumed to be the execution directory unless a full or relative
path is given as a part of the file name. The section name denotes the section or sections of the library file
to include.

If <file name> uses an absolute path then that path is used. Otherwise, the search-path order for <file
name> is:

* Relative to the directory that contains <file name>.
* Relative to the directory that contains the file with the top-level netlist.

* Relative to the Xyce execution directory.

2.1.16.2. .LIB definition statement

The format given above is when the . LIB command is used to reference a library file; however, it is also
used as part of the syntax in a library file.

48

General Form .LIB <entry name>
<netlist lines>=x*
.endl <entry name>

Examples
* Library file res.lib
.1ib low
.param rval=2
r3 2 0 9
.endl low

.1lib nom
.param rval=3
r3 2 0 8
.endl nom

Arguments and

Options entry name
The name to be used to identify this library component. When used on a
. LIB call line, these segments of the library file will be included in the
calling file.

Note that for each entry name, there is a matched .1ib and .endl. Any valid netlist commands can be
placed inside the . 1ib and .endl statements. The following is an example calling netlist, which refers to
the library in the examples above:

* Netlist file res.cir
vl 1 0 1

R 1 2 {rval}
.1lib res.lib nom
.tran 1 ps 1lns
.end

In this example, only the netlist commands that are inside of the “nom” library will be parsed, while the
commands inside of the “low” library will be discarded. As a result, the value for resistor r3 is 8, and the
value for rval is 3.

49

2.1.17. .LIN (Linear Analysis)

Extracts linear transfer parameters (S-, Y- and Z-parameters) for a general multiport network. Those
parameters can be output in either Touchstone format [[7].

General Form .LIN [SPARCALC=<1]0>] [FORMAT=<TOUCHSTONEZ | TOUCHSTONE>]
+ [LINTYPE=<S|Y|Z>] [DATAFORMAT=<RI |MA|DB>]
+ [FILE=<output filename>] [WIDTH=<print field width>]
+ [PRECISION=<floating point output precision>]

Examples .LIN
.LIN FORMAT=TOUCHSTONE DATAFORMAT=MA FILE=foo

Arguments and

Options SPARCALC=<1|0>

If this is set to 1 then the LIN analysis is done at the frequency values
specified on the . AC line. The default value is 1.

FORMAT=<TOUCHSTONEZ | TOUCHSTONE>
Output file format

TOUCHSTONE Output file is in Touchstone 1 format

TOUCHSTONEZ2 Output file is in Touchstone 2 format. The default is
TOUCHSTONEZ2.

LINTYPE=<S|Y|Z>
The type of parameter data (S, Y or Z) in the output file. The default is S.

DATAFORMAT=<RI |MA |DB>
Format for the S-, Y- or Z-parameter data

RI Real-imaginary format

The data is output as the real and imaginary parts for each extracted S-,
Y- or Z-parameter. This is the default.

MA Magnitude-angle format
The data is output as the magnitude and the phase angle of each

extracted S-, Y- or Z-parameter. For compatibility with Touchstone
formats, the angle values are in degrees.

DB Magnitude(dB)-angle format
The data is output as the magnitude (in dB) and the phase angle of each
extracted S-, Y- or Z-parameter. For compatibility with Touchstone
formats, the angle values are in degrees.

FILE=<output filename>
Specifies the name of the file to which the output will be written. For

HSPICE compatibility F I LENAME= is an allowed synonym for FILE= on
.LIN lines.

50

WIDTH=<print field width>
Controls the output width used in formatting the output.

PRECISION=<floating point precision>
Number of floating point digits past the decimal for output data.

Comments

The . LIN command line functions like a . PRINT line for the extracted S-, Y- or
Z-parameter data. So, a netlist can have multiple . LIN lines with different values for
the LINTYPE, DATAFORMAT and FILE arguments on each line. If there are multiple
. LIN lines in the netlist, then a linear analysis will be performed if SPARCALC=1 on
any of those . LIN lines.

The default filename for both Touchstone formats is <net 1istName> . sNp where
N is the number of “ports” (P devices) specified in the netlist.

The Xyce Touchstone output is based on the Touchstone standard [7]. So, it differs
slightly from the corresponding HSPICE output. In particular, the full matrix of S-, Y-
or Z-parameters is always output.

The HSPICE SPARDIGIT and FREQDIGIT arguments are not supported. Instead,
the PRECISION argument is used for all of the output values.

The output of individual S-parameters via the .PRINT AC line is supported.

If the -r <raw-file-name> and —a command line options are used with . LIN
with SPARCALC=1 then Xyce will exit with a parsing error.

The —o command line option can be used with . LIN. In that case, the output defaults
to Touchstone 2 format and any FILE=<filename> argument on the . LIN line is
ignored.

51

2.1.18. .MEASURE or .MEAS (Measure output)

The .MEASURE statement allows calculation or reporting of simulation metrics to an external file, as well
as to the standard output and/or a log file. One can measure when simulated signals reach designated
values, or when they are equal to other simulation values. The . MEASURE statement is supported for
.TRAN, .DC, .AC and .NOISE analyses. It can be used with . STEP in all four cases. For HSPICE
compatibility, . MEAS is an allowed synonym for . MEASURE.

The syntaxes for the . MEASURE statements are shown below. The AVG, DERIV, EQN, ERR, ERR1, ERR2,
FIND-AT, FIND-WHEN, INTEG, MIN, MAX, PP, RMS and WHEN measures are supported for all four
“measure modes” (TRAN, AC, DC and NOISE). The TRIG-TARG measure is only supported for TRAN
measure mode. Note that each measure type (e.g., MAX) may be listed twice. This is because only a subset
of the allowed “qualifiers” (e.g., FROM and TO) may be supported for the AC, DC and NOI SE measure
modes.

The ERROR measure is Xyce-specific, and is supported for TRAN, AC, DC and NOISE measure modes. The
DUTY, FREQ, FOUR, OFF_TIME and ON_TIME measures are also Xyce-specific, and are only supported
for TRAN measure mode.

General Form .MEASURE TRAN <result name> AVG <variable>
+ [MIN_THRESH=<value>] [MAX_THRESH=<value>]
+ [FROM=<time>] [TO=<time>] [TD=<time>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> DERIV <variable> AT=<value>
+ [MINVAL=<value>] [DEFAULT VAL=<value>]
+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> DERIV <variable>

WHEN <variable>=<variable,;>|<value>

[MINVAL=<value>] [FROM=<value>] [TO=<value>] [TD=<value>]
[RISE=r |LAST] [FALL=f|LAST] [CROSS=c|LAST]
[DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

+ + + +

.MEASURE TRAN <result name> DUTY <variable>

+ [ON=<value>] [OFF=<value>] [MINVAL=<value>]

+ [FROM=<value>] [TO=<value>] [TID=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> EQN <variable>
+ [FROM=<value>] [TO=<value>] [TID=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> <ERR|ERRI1|ERR2>

+ <variable;> <variable;> [FROM=<value>] [TO=<value>]

+ [MINVAL=<value>] [IGNOR|YMIN=<value>] [YMAX=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> ERROR <variable> FILE=<value>

52

+ INDEPVARCOL=<value> DEPVARCOL=<value> [COMP_FUNCTION=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> FIND <variable> AT=<value>
+ [MINVAL=<value>] [DEFAULT VAL=<value>]
+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> FIND <variable>
+ WHEN <variable>=<variabley>|<value>

+ [FROM=<value>] [TO=<value>] [TID=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]

+ [MINVAL=<value>] [DEFAULT_VAL=<value>]

+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> FOUR <variable> AT=freqg

+ [NUMFREQ=<value>] [GRIDSIZE=<value>]

+ [FROM=<value>] [TO=<value>] [TD=<value>]

+ [DEFAULT VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> FREQ <variable>

+ [ON=<value>] [OFF=<value>] [MINVAL=<value>]

+ [FROM=<value>] [TO=<value>] [TD=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> INTEG <variable>
+ [FROM=<value>] [TO=<value>] [TD=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> MAX <variable>
+ [FROM=<value>] [TO=<value>] [TD=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST] [RFC_LEVEL=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

+ [PRINT=<value>] [OUTPUT=<value>]

.MEASURE TRAN <result name> MIN <variable>

+ [FROM=<value>] [TO=<value>] [TID=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST] [RFC_LEVEL=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

+ [PRINT=<value>] [OUTPUT=<value>]

.MEASURE TRAN <result name> OFF_TIME <variable>

+ [OFF=<value>] [MINVAL=<value>]

+ [FROM=<value>] [TO=<value>] [TD=<value>]

+ [DEFAULT VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> ON_TIME <variable>

+ [ON=<value>] [MINVAL=<value>]
+ [FROM=<value>] [TO=<value>] [TD=<value>]

53

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> PP <variable>

+ [FROM=<value>] [TO=<value>] [TD=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST] [RFC_LEVEL=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> RMS <variable>
+ [FROM=<value>] [TO=<value>] [TID=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> WHEN <variable>=<variable;>|<value>
+ [FROM=<value>] [TO=<value>] [TD=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]

+ [MINVAL=<value>] [DEFAULT_VAL=<value>]

+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> TRIG <variable>=<variable,>|<value>
+ [RISE=rl1|LAST] [FALL=f1|LAST] [CROSS=cl|LAST]

+ TARG <variables>=<variables>|<value>

+ [RISE=r2|LAST] [FALL=f2|LAST] [CROSS=c2|LAST]

+ [FROM=<value>] [TO=<value>] [TD=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN <result name> TRIG AT=<value>
+ TARG <variablejz>=<variables>|<value>

+ [RISE=r2|LAST] [FALL=f2|LAST] [CROSS=c2|LAST]

+ [FROM=<value>] [TO=<value>] [TD=<value>]

+ [DEFAULT VAL=<value>] [PRECISION=<value>] [PRINT=<value>]
.MEASURE <AC|DC|NOISE> <result name> AVG <variable>

+ [FROM=<value>] [TO=<value>]

+ [DEFAULT VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC|DC|NOISE> <result name> DERIV <variable> AT=<value>
+ [MINVAL=<value>] [DEFAULT_VAL=<value>]
+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC|DC|NOISE> <result name> DERIV <variable>
+ WHEN <variable>=<variabley>|<value>

+ [MINVAL=<value>] [FROM=<value>] [TO=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]
.MEASURE <AC|DC|NOISE> <result name> EQN <variable>

+ [FROM=<value>] [TO=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

54

.MEASURE <AC|DC|NOISE> <result name> <ERR|ERRI1|ERR2>

+ <variable;> <variable;> [FROM=<value>] [TO=<value>]

+ [MINVAL=<value>] [IGNOR|YMIN=<value>] [YMAX=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC|DC|NOISE> <result name> ERROR <variable>
+ FILE=<value> [DEPVARCOL=<value>] [COMP_FUNCTION=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC|DC|NOISE> <result name> FIND <variable> AT=<value>
+ [MINVAL=<value>] [DEFAULT_VAL=<value>]
+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC|DC|NOISE> <result name> FIND <variable>
+ WHEN <variable>=<variable;>|<value>

+ [FROM=<value>] [TO=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]

+ [MINVAL=<value>] [DEFAULT_VAL=<value>]

+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC|DC|NOISE> <result name> INTEG <variable>

+ [FROM=<value>] [TO=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC|DC|NOISE> <result name> MAX <variable>
+ [FROM=<value>] [TO=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

+ [PRINT=<value>] [OUTPUT=<value>]

.MEASURE <AC|DC|NOISE> <result name> MIN <variable>
+ [FROM=<value>] [TO=<value>]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

+ [PRINT=<value>] [OUTPUT=<value>]

.MEASURE <AC|DC|NOISE> <result name> PP <variable>
+ [FROM=<value>] [TO=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC|DC|NOISE> <result name> RMS <variable>
+ [FROM=<value>] [TO=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

MEASURE <AC|DC|NOISE> <result name>

+ WHEN <variable>=<variablez>|<value>

+ [FROM=<value>] [TO=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]
+ [MINVAL=<value>] [DEFAULT_VAL=<value>]

+ [PRECISION=<value>] [PRINT=<value>]

55

Examples

.MEASURE TRAN hitl_75 WHEN V(1)=0.75 MINVAL=0.02
.MEASURE TRAN hit2_75 WHEN V(1)=0.75 MINVAL=0.08 RISE=2
.MEASURE TRAN avgAll AVG V(1)

.MEASURE TRAN dutyAll DUTY V(1) ON=0.75 OFF=0.25
.MEASURE DC maxV1l MAX V(1)

.MEAS DC minV2 MIN V(2)

.MEASURE AC maxV1R MAX VR (1)

.MEASURE NOISE maxonoise MAX ONOISE

Arguments and

Options

result name

Measured results are reported to the output and log file. Additionally, for
TRAN measures, the results are stored in files called

circuitFileName .mt#, where the suffixed number (#) starts at O and
increases for multiple iterations (. STEP iterations) of a given simulation.
Each line of this file will contain the measurement name, <result

name>, followed by its value for that run. The <result name> mustbe a
legal Xyce character string. For DC measures, the results are stored in the
files circuitFileName.ms#, while AC and NOISE measures use the
files circuitFileName .ma#.

If multiple measures are defined with the same <result name> then
Xyce uses the last such definition, and issues warning messages about (and
discards) any previous measure definitions with the same <result
name>.

measure type

AVG, DERIV, DUTY, EQN, ERR, ERR1, ERR2, ERROR,
FIND, FREQ, FOUR, INTEG, MAX, MIN, OFF_TIME,
ON_TIME, PP, RMS, WHEN, TRIG, TARG

The third argument specifies the type of measurement or calculation to be
done. The only exception is the TARG clause which comes later in the
argument list, after the TRIG clause has been specified.

By default, the measurement is performed over the entire simulation. The
calculations can be limited to a specific measurement window by using the
qualifiers FROM, TO, TD, RISE, FALL, CROSS and MINVAL, which are
explained below.

The supported measure types and their definitions are:

AVG Computes the arithmetic mean of <variable> for the simulation, or
within the extent of the measurement window. The measurement
window can be limited with the qualifiers FROM, TO and TD for TRAN
measures, and with FROM and TO for AC, DC and NOI SE measures.

DERIV Computes the derivative of <variable> at a user-specified time
(by using the AT qualifier) or when a user-specified condition occurs

56

(by using the WHEN qualifier). If the WHEN qualifier is used then the
measurement window can be limited with the qualifiers FROM, TO,
RISE, FALL and CROSS for all measure modes. In addition, the TD
qualifier is supported for TRAN measures. The MINVAL qualifier is
used as a comparison tolerance for both AT and WHEN. For HSPICE
compatibility, DERIVATIVE is an allowed synonym for DERIV.

DUTY Fraction of time that <variable> is greater than ON and does not
fall below OFF either for the entire simulation, or the measurement
window. The qualifier MINVAL is used as a tolerance on the ON and
OFF values, so that the thresholds become (ON — MINVAL) and (OFF
— MINVAL). The measurement window can be limited with the
qualifiers FROM, TO, and TD for TRAN measures.

EQON Calculates the value of <variable> during the simulation. The
measurement window can be limited with the qualifiers FROM, TO and
TD for TRAN measures, and with FROM and TO for AC, DC and NOISE
measures. As noted in the “Additional Examples” subsection, the
variable can use the results of other measure statements.

ERRx Calculates the error between two simulation variables, where the
ERRI1 and ERR2 functions (and the use of the MINVAL, YMIN and
YMAX qualifiers in those functions) are defined further in the “Error
Functions (ERR1 and ERR2)” subsection. The ERR measure type is a
synonym for the ERR1 measure type. The measurement window can be
limited with the qualifiers FROM and TO.

ERROR Calculates the norm between the measured waveform and a
“comparison waveform” specified in a file. The supported norms are
L1, L2 and INFNORM. The default norm is the L2 norm.

FIND-AT Returns the value of <variable> at the time when the AT
clause is satisfied. The AT clause is described in more detail later in this
list.

FIND-WHEN Returns the value of <variable> at the time when the
WHEN clause is satisfied. The WHEN clause is described in more detail
later in this list.

FOUR Calculates the fourier transform of the transient waveform for
<variable>, given the fundamental frequency AT. All frequencies
output by the measure will be multiples of that fundamental frequency,
and will always start at that fundamental frequency. The values of the
DC component and the first NUMFREQ-1 harmonics are determined
using an interpolation of GRIDSIZE points. The default values for
NUMFREQ and GRIDSIZE are 10 and 200, respectively. The
measurement window can be limited with the qualifiers FROM, TO and
TD for TRAN measures. For this measure, the phase data is always
output in degrees.

FREQ An estimate of the frequency of <variable>, found by cycle
counting during the simulation. Cycles are defined through the values of
ON and OFF with MINVAL being used as a tolerance so that the

57

thresholds becomes (ON — MINVAL) and (OFF + MINVAL). The
measurement window can be limited with the qualifiers FROM, TO and
TD for TRAN measures.

INTEG Calculates the integral of outVal through second order numerical
integration. The integration window can be limited with the qualifiers
FROM, TO and TD for TRAN measures, and with FROM and TO for AC,
DC and NOISE measures. For HSPICE compatibility, INTEGRAL is an
allowed synonym for INTEG.

MAX Returns the maximum value of <variable> during the simulation.
The measurement window can be limited with the qualifiers FROM, TO,
TD, RISE, FALL and CROSS for TRAN measures, and with FROM and
TO for AC, DC and NOISE measures.

MIN Returns the minimum value of <variable> during the simulation.
The measurement window can be limited with the qualifiers FROM, TO,
TD, RISE, FALL and CROSS for TRAN measures, and with FROM and
TO for AC, DC and NOISE measures.

OFF_TIME Returns the time that <variable> is below OFF during the
simulation or measurement window, normalized by the number of
cycles of the waveform during the simulation or measurement window.
OFF uses MINVAL as a tolerance, and the threshold becomes (OFF +
MINVAL). The measurement window can be limited with the qualifiers
FROM, TO and TD for TRAN measures.

ON_TIME Returns the time that <variable> is above ON during the
simulation or measurement window, normalized by the number of
cycles of the waveform during the simulation or measurement window.
ON uses MINVAL as a tolerance, and the threshold becomes (ON —
MINVAL). The measurement window can be limited with the qualifiers
FROM, TO and TD for TRAN measures.

PP Returns the difference between the maximum value and the minimum
value <variable> during the simulation. The measurement window
can be limited with the qualifiers FROM, TO, TD, RISE, FALL and
CROSS for TRAN measures, and with FROM and TO for AC, DC and
NOISE measures.

RMS Computes the root-mean-squared value of <variable> during the
simulation, which is defined as "the square root of the area under the
<variable> curve, divided by the period of interest”. The
measurement window can be limited with the qualifiers FROM, TO and
TD for TRAN measures, and with FROM and TO for AC, DC and NOISE
measures.

TRIG

TARG Measures the time between a trigger event and a target event. The
trigger is specified with TRIG <variable>=<variablej;> or
TRIG <variable>=<value>or TRIG AT=<value>. Likewise,
the the target is specified as TARG <variablez>=<variables> or
TRIG <variables>=<value>.Itis also possible to use this

58

measure to find a rise time for variable when the rise time is defined as
the time to go from some small fraction of the maxima to some other
fraction of the maxima. For example, the syntax for finding a rise time
from 10% to 90% of the maxima is:

TRIG V(node) FRAC_MAX=0.1 TARG V (node)
FRAC_MAX=0.9

WHEN Returns the time (or frequency or DC sweep value) when
<variable> reaches <variable,> or the constant value, value.
The measurement window can be limited with the qualifiers FROM, TO,
RISE, FALL and CROSS for all measure modes. In addition, the TD
qualifier is supported for TRAN measures. The qualifier MINVAL acts as
a tolerance for the comparison. For example when <variable;> is
specified, the comparison used is when <variable> =
<variable;> 4+ MINVAL or when a constant, value is given:
<variable> = value + MINVAL. If the conditions specified for
finding a given value were not found during the simulation then the
measure will return the default value of —1. The user may change this
default value with the DEFAULT_VAL qualifier described below. Note:
The use of FIND and WHEN in one measure statement is also supported.

variable

variable,

value
These quantities represents the test for the stated measurement.
<variable> is a simulation quantity, such as a voltage or current. One can
compare it to another simulation variable or a fixed quantity. Additionally,
the <variable> may be a Xyce expression delimited by { } brackets. As
noted above, an example is V (1) =0.75

AT=value
A time at which the measurement calculation will occur. This is used by the
DERIV and FIND measures and the TRIG clause. Note that ill-considered
use of the FROM, TO, TD and AT qualifiers in the same TRIG-TARG
measure statement can cause an empty measurement window, and thus a
failed measure. Finally, the FROM and TO qualifiers take precedence over the
AT qualifier for DERIV and F IND measures.

FROM=value
A time (or frequency or DC sweep value) after which the measurement
calculation will start. For DC measures, this qualifier uses the first variable
on the .DC line.

TO=value
A time (or frequency or DC sweep value) at which the measurement
calculation will stop. For DC measures, this qualifier uses the first variable
on the .DC line.

TD=value
A time delay before which this measurement should be taken or checked.
Note that ill-considered use of both FROM and TO qualifiers and a TD

59

qualifier in the same measure statement can cause an empty measurement
window, and thus a failed measure.

MIN_THRESH=value
A minimum threshold value above which the measurement calculation will
be done and below which it will not be done. This is only used by the AVG
measure.

MAX_THRESH=value
A maximum threshold value above which the measurement calculation will
not be done and below which it will be done. This is only used by the AVG
measure.

RISE=r|LAST
The number of rises after which the measurement should be checked. If
LAST is specified, then the last rise found in the simulation will be used. It is
recommended that only one of the qualifiers RISE, FALL or CROSS be
used in a given measure statement. The exception is TRIG-TARG measures.
In that case, different RISE, FALL and CROSS criteria can be specified for
TRIG and TARG.

FALL=f | LAST
The number of falls after which the measurement should be checked. If
LAST is specified, then the last fall found in the simulation will be used.

CROSS=c|LAST
The number of zero crossings after which the measurement should be
checked. If LAST is specified, then the last zero crossing found in the
simulation will be used.

RFC_LEVEL=value
The level used to calculate rises, falls and crosses when the “level-crossing”
mode is used by measure types that do not support the WHEN qualifier. So,
RFC_LEVEL is used by the MAX, MIN and PP measures. Its usage is
discussed further in the subsection on “Rise, Fall and Cross Qualifiers”.

MINVAL=value
For the DERIV, DUTY, FIND, FREQ, OFF_TIME, ON_TIME and WHEN
measures, this is allowed difference between outVal and the variable to
which it is being compared. This has a default value of 1.0e-12. One may
need to specify a larger value to avoid missing the test condition in a
transient run. The descriptions of those seven measures detail how MINVAL
is used by each measure. For the ERR1 and ERR2 measures, if the absolute
value of <variable;> is less than MINVAL, then MINVAL replaces the
value of the denominator of the ERR1 or ERR2 expression. For all measure
types, that support the FROM, TO and/or TD qualifiers, MINVAL also
functions as a relative tolerance for the comparison of the simulation time
(or sweep value) to the bounds of the measurement window. This allows for
numerical-roundoff errors if the FROM, TO and/or TD qualifiers are
expressions.

60

YMIN=value
If the absolute value of <variable;> in ERR1 or ERR2 measure is less
than the YMIN value then the ERR1 or ERR2 calculation does not consider
that point. The default is 1.0e-15. IGNOR and IGNORE are synonyms for
YMIN.

YMAX=value
If the absolute value of <variable;> in ERR1 or ERR2 measure is greater
than YMAX value then the ERR1 or ERR2 calculation does not consider that
point. The default is 1.0e15.

FRAC_MAX=value
A fractional value of the maximum value of <variable>. This is useful
for ensemble runs where the maximum value of a waveform is not known in
advance. FRAC_MAX is used by the TRIG and TARG measures.

ON=value
The value at which a signal is considered to be “on” for FREQ, DUTY and
ON__TIME measure calculations. This has a default value of 0.

OFF=value
The value at which a signal is considered to be “off” for FREQ, DUTY and
ON_T IME measure calculations. This has a default value of 0.

DEFAULT_VAL=value
If the conditions specified for finding a given value are not found during the
simulation then the measure will return the default value of -1 in the
circuitFileName.mt# (or circuitFileName.ms# or
circuitFileName .ma#) files. The measure value in the standard output
or log file will be FAILED. The default return value for the
circuitFileName.mt# (or circuitFileName.ms# or
circuitFileName.ma#) files is settable by the user for each measure
by adding the qualifier DEFAULT_VAL=<retval> on that measure line.
As examples, a measure will fail if the condition specified by a WHEN or AT
qualifier is not found. It will also fail if the user specifies a set of FROM, TO
and TD values for a given measure that yields an empty measurement
interval. If either . OPTIONS MEASURE MEASFAIL=<val> or
.OPTIONS MEASURE DEFAULT_VAL=<val> are given in the netlist
then those values override the DEFAULT_VAL parameters given on
individual .MEASURE lines. See Section for more details. As a final
note, the FOUR measure is a special case since it produces multiline output.
Failed FOUR measures will be reported as FAILED in the
circuitFileName.mt# (or circuitFileName.ms# or
circuitFileName.ma#) files, irrespective of the various MEASFAIL
and DEFAULT_VAL settings.

PRECISION=value
The default precision for . MEASURE output is 6 digits after the decimal
point. This argument provides a user configurable precision for a given
.MEASURE statement that applies to both the .mt # (or .ms# or .ma#)
files and standard output. If . OPTIONS MEASURE MEASDGT=<val> is

61

given in the netlist then that value overrides the PRECISION parameters
given on individual . MEASURE lines.

PRINT=value
This parameter controls where the . MEASURE output appears. The default
is ALL, which produces measure output in both the . mt # (or .ms# or
.ma#) file and to the standard output. A value of STDOUT only produces
measure output to standard output, while a value of NONE suppresses the
measure output to both the .mt# (or .ms# or .ma#) file and standard
output. The subsection on “Suppresing Measure Output” gives examples and
also discuss the interactions of this parameter with . OPTIONS MEASURE
MEASPRINT=<val>.

OUTPUT=value
This parameter is only supported for the MAX and MIN measures. The
default is VALUE. For TRAN measures, a value of VALUE will print the
maximum (or minimum) value to the . mt # file. A value of TIME will print
the time of the maximum (or minimum) value to the .mt # file. For DC
measures, a value of SV will output the value of the first variable on the .DC
line to the .ms# file. For AC and NOISE measures, a value of FREQ will
print the frequency at which the maximum (or minimum) value occurs to the
.ma# file. This parameter does not affect the descriptive output that is
printed to the standard output. The “Additional Examples” subsection gives
an example for the MAX measure.

VAL=value
This parameter is only implemented for the TRIG and TARG measures. It is
not the preferred Xyce syntax. It is only supported for HSPICE
compatibility (see that subsection, below, for details).

GOAL=value

This parameter is not implemented in Xyce, but is included for compatibility
with HSPICE netlists.

WEIGHT=value
This parameter is not implemented in Xyce, but is included for compatibility
with HSPICE netlists.

FILE=value
The filename for the “comparison file” used for the ERROR measure. This
qualifier is required for the ERROR measure.

INDEPVARCOL=value
The column index, in the “comparison file”, of the independent variable (e.g,
the simulation time or frequency) used in an ERROR measure. This qualifier
is required for the TRAN, AC and NOISE measure modes. For those modes,
the INDEPVARCOL and DEPVARCOL qualifiers must have different values.
The INDEPVARCOL qualifier is not used for DC mode ERROR measures,
and will be “silently ignored” in that case. Finally, note that the column
indices in Xyce output files start with 0.

62

DEPVARCOL=value
The column index, in the “comparison file”, of the dependent variable used
in an ERROR measure. This qualifier is required for the ERROR measure for
all four measure modes (TRAN, AC, DC and NOISE). For the TRAN, AC and
NOISE measure modes, the DEPVARCOL and INDEPVARCOL qualifiers
must have different values. Finally, note that the column indices in Xyce
output files start with 0.

COMP_FUNCTION=value
This is the norm used by the ERROR measure to compare the simulation
values for the measured variable with the corresponding values in the
“comparison file” specified with the FILE qualifier. The allowed values are
L1NORM, L2NORM and INFNORM. Any other values will default to
L2NORM. This qualifier is optional for the ERROR measure, and has a
default value of L2NORM. The descriptive output for each ERROR measure,
that is printed to standard output, will explicitly state which norm was used
for each ERROR measure.

2.1.18.1. Measure Output

As previously mentioned, measured results are reported to the output and log file. Additionally, for TRAN
measures, the results are stored in files called circuitFileName .mt#, where the suffixed number (#)
starts at 0 and increases for multiple iterations (. STEP iterations) of a given simulation. For DC measures,
the results are stored in the files circuitFileName .ms#, while AC and NOISE measures use the files
circuitFileName.ma#.

A user-defined measure can also be output at each time-step via inclusion in a .PRINT command. For
example, this netlist excerpt outputs the integral of V (1) at each time step. The measure value TINTV1 is
then also output at the end of the simulation to both the standard output and the .mt # (or .ms# or .ma#)
files.

.MEASURE TRAN TINTV1 INTEG V(1)
.PRINT TRAN FORMAT=NOINDEX V(1) TINTV1

The output for successful and failed measures to the standard output (and log files) provides more
information than just the measure’s calculated values. As an example, for a successful and failed MAX
measure the standard output would be:

MAXVAL = 0.999758 at time = 0.000249037
Measure Start Time= 0 Measure End Time= 0.001

Netlist warning: MAXFAIL failed. TO value < FROM value

MAXFAIL = FAILED at time = 0
Measure Start Time= 1 Measure End Time= 0.001

In general, information on the measurement window, the time(s) that the measure’s value(s) were
calculated and a possible cause for a failed measure are output to standard output for all measures except

63

for FOUR. This information is similar, but not identical, to HSPICE’s verbose output. For a failed FOUR
measure, the standard output will have “FAILED”, but there may be less information provided as to why
the FOUR measure failed.

In this example, the circuitFileName .mt# file would have the following output:

MAXVAL = 0.999758
MAXFAIL = -1

2.1.18.2. Measurement Windows

There is an implicit precedence when multiple qualifiers are specified to limit the measurement window for
a given .MEASURE statement for TRAN measures. In general, Xyce first considers the time-window
criteria of the FROM, TO and TD qualifiers. If the simulation time is within that user-specified time-window
then the RISE, FALL, CROSS are qualifiers are counted and/or the TRIG, TARG and WHEN qualifiers are
evaluated.

The following netlist excerpt shows simple examples where the . MEASURE statement may return the
default value because the measure “failed”. For riseSine, this may occur because V (1) never has an
output value of 1.0 because of the time steps chosen by Xyce. So, careful selection of the threshold values
in WHEN, TRIG and TARG clauses may be needed in some cases. For fallPulseFracMax, the
simulation interval is too short and the TARG value of 0.3 for V (2) is not reached within the specified
one-second simulation time. For maxSine, the FROM, TO and TD values yield an empty time interval,
which is typically an error in netlist entry.

vs 1 0 SIN(O 1.0 0.5 0 0)

vP 2 0 PULSE(0 10 0.2 0.2 0.2 0.5 2)
Rl 1 0 100K

Rz 2 0 100K

.TRAN 0 1

.PRINT TRAN FORMAT=NOINDEX V(1) V(2)

.MEASURE TRAN riseSine TRIG V(1)=0 TARG V(1)=1.0
.MEASURE TRAN fallPulseFracMax TRIG V (2) FRAC_MAX=0.97
+ TARG V(2) FRAC_MAX=0.03

.MEASURE TRAN maxSine MAX V(1) FROM=0.2 TO=0.25 TD=0.5

The intent in Xyce is for the measurement window to be the intersection of the FROM~-TO and TD
windows, if both are specified. As noted above, the use of both FROM—-TO and TD windows can lead to an
empty measurement window. So, that usage is not recommended.

2.1.18.3. Expression Support

These measure “qualifiers” (TO, FROM, TD, RISE, FALL, CROSS, AT, OFF, ON, DEFAULT_VAL and
VAL) support expressions. The caveat is that the expression must evaluate to a constant at the time that
each measure object is made. So, that expression can not depend on solution variables or lead currents.
This limitation matches HSPICE. It also can not depend on a global parameter. Finally, it can not depend
on another measure’s value, which is an allowed syntax in HSPICE.

64

Simple examples of allowed syntaxes for qualifiers are as follows, where all three measures will get the
same answer:

.PARAM t1=0.2
.PARAM t2=0.3
.MEASURE TRAN M1 PP V(1) FROM=‘0.1+0.2'
.MEASURE TRAN M2 PP V(1) FROM={0.l1+tl}
.MEASURE TRAN M3 PP V(1) TO={t2}

Expressions should also work in FIND-WHEN, WHEN and TRIG-TARG measures. The preferred Xyce
syntax with curly braces and the three legal HSPICE syntaxes for expressions should all work. However,
note that the two HSPICE expression syntaxes shown below are only legal in Xyce . MEASURE

statements.

.PARAM al=0.1
.PARAM az2=0.7

.MEASURE TRAN M4 FIND V(2) WHEN V(1l)={al}

.MEASURE TRAN M4PAR FIND V(2) WHEN V(1)=PAR(‘al’) ; HSPICE exp. syntax
.MEASURE TRAN M4PAREN FIND V(2) WHEN V(1l)=(‘al’) ; HSPICE exp. syntax
.MEASURE TRAN M5 WHEN V(1l)={al}

.MEASURE TRAN M6 TRIG {v(1l)-0.1} VAL={al} TARG {v(l)-0.5} VAL={a2}
2.1.18.4. Re-Measure

Xyce can re-calculate (or re-measure) the values for . MEASURE and/or .FFT statements using existing
Xyce output files. This is useful for tuning . MEASURE and/or . FFT statements to better capture response
metrics for a circuit when the underlying simulation runtime is long. To use this functionality, add the
command line argument —~remeasure <file>, where <file> isa Xyce-generated .prn, .csv or

. csd output file.

There are several important limitations with —remeasure:

* The data required by the . MEASURE and/or . FFT statements must have been output in the

simulation output file. When using —~remeasure, Xyce does not recalculate the full solution, but
uses the data supplied in the output file instead. Thus, everything a . MEASURE and/or .FFT
statement needs to calculate its results must be in the output file. So, the nodal voltages (e.g., node
A), lead currents (e.g, for device R1) and branch currrents requested by the . MEASURE statements
must have been used, at least once, on the . PRINT statement in the form of V (A), N (a) or I (R1).
They can not only appear on the . PRINT line within an expression or a voltage-difference operator.

Only voltage node values, lead currents and branch currents can be used in . MEASURE statements
while using —remeasure. Power values will not be interpreted correctly during a re-measure
operation. A work-around for that limitation is illustrated below.

—-remeasure only works with . tran or . dc analyses. However, it can be used with . STEP in
both cases. It is not currently supported for . ac analyses.

For .tran analyses, —-remeasure works with .prn, .csv and . csd formatted output data.
However, it might only work with . csv and . csd files generated by Xyce.

65

* For . dc analyses, ~-remeasure works with .prn and . csd formatted output data. However, it
might only work with . csd files generated by Xyce.

* —remeasure will fail if the netlist has a . op statement that precedes the .t ran or . dc statement.
This can be fixed by either moving the . op statement or by temporarily commenting the . op
statement out during —remeasure.

As an example in using —~remeasure, consider a netlist called myCircuit . cir which had previously
been run in Xyce and produced the output file myCircuit.cir.prn. One could run ~remeasure
with the following command:

Xyce -remeasure myCircuit.cir.prn myCircuit.cir

A work-around for re-measuring power values (e.g., for device R1) is to use this combination of . PRINT
and .MEASURE lines in the netlist. As noted above, expressions will work with re-measure if all of the
quantities used in the expression also appear outside of an expression on the . PRINT line.

Rl abl
.PRINT TRAN V(a) V(b) I(R1l)
.MEASURE TRAN PR1B MAX {(V(a)-V(b))*I(R1l)}

2.1.18.5. RISE, FALL and CROSS Qualifiers

The RISE, FALL and CROSS qualifiers are supported for more measures types, and in more ways, in Xyce
than in HSPICE for TRAN meaures. This sections explains those differences and supplies some examples.
One key difference is that Xyce supports two different “modes” for these qualifiers for TRAN meaures.

The first mode is “level-crossing”, where the RISE, FALL and CROSS counts are incremented each time
the measured signal (e.g, V (a)) crosses the user-specified level (termed crossVal here). If we define
currentVal and lastVal as the current and previous values of V (a), and riseCount,
fallCount and crossCount as the number of rises, falls and crosses that have occurred, then the
pseudo-code for this mode is:

if ((currentVal-crossVal >= 0.0) AND (lastVal-crossVal < 0.0))
{

riseCount++;
}
else if((currentVal-crossVal) <= 0.0) AND (lastVal-crossVal > 0.0))

{
fallCount++;

For this mode, the crossCount is then incremented if either the riseCount or the fallCount was
incremented. This mode should work identically to HSPICE for the DERIV-WHEN, FIND-WHEN, WHEN
and TRIG-TARG measures.

The second mode is termed “absolute”. In this mode, Xyce attempts to auto-detect whether the measured
waveform has started a new rise or fall. However, the crossCount is still evaluated against a fixed

66

crossVal of 0. This mode may be useful for pulse waveforms with sharp rises and falls, where the
waveform’s maximum (or minimum) level is not exactly known in advance. It may not work well with
noisy waveforms. If we define two Boolean variables i sRising and isFalling then the pseudo-code
for this mode is:

if((currentvVal > lastVal) AND !isRising)
{
isRising= true;
isFalling = false;
riseCount++;
}
else if((currentVal < lastVal) AND !isFalling)
{
isRising = false;
isFalling = true;
fallCount++;
}
if (((currentval >= 0.0) AND (lastval < 0.0)) OR
((currentVal <= 0.0) AND (lastVal > 0.0)))

crossCount++;

The following table shows which of these two modes are supported for which Xyce measures.

Table 2-2. RISE, FALL and CROSS Support in .MEASURE.

Measure Level-Crossing ‘ Absolute
The crossVal is set by the value of the No

DERIV-WHEN WHEN clause

FIND-WHEN and | The crossVal is set by the value of the No

WHEN WHEN clause
A fixed crossVal can be set with . .

MAX Default, if REC_LEVEL is not set
RFC_LEVEL
A fixed crossVal can be set with . .

MIN Default, if REC_LEVEL is not set
RFC_LEVEL
A fixed Val can be set with . .

PP crossia Default, if REC_LEVEL is not set
REFC_LEVEL
The levels are set separately by the values in .

TRIG and TARG If FRAC_MAX is used
the TRIG and TARG clauses

As simple examples of these two modes for the MAX measure, consider the following netlist:

rexamples of RFC modes

VvVPWL1 1 O PWL(O O 0.2 0.5 0.4 0 0.6 0.75 0.8 0 1.0 0.75 1.2 0.0)
Rl 1 0 100

.TRAN 0 1.2s

.MEASURE TRAN MAX1 MAX V(1) RISE=1

67

.MEASURE TRAN MAX2 MAX V(1) RISE=1 RFC_LEVEL=0.6
.MEASURE TRAN MAX3 MAX V(1) FALL=1 RFC_LEVEL=0.5
.PRINT TRAN V(1) MAX1 MAX2 MAX3

.END

The descriptive output to standard output would then be:

MAX1 = 5.000000e-01 at time = 2.000000e-01

Measure Start Time=
Rise 1: Start Time=

0.000000e+00
1.000000e-10

Measure End
End Time= 4.

MAX2 = 7.500000e-01 at time = 6.000000e-01

Measure Start Time=

0.000000e+00

Measure End

Time= 1.200000e+00
000000e-01

Time= 1.200000e+00

Rise 1: Start Time= 5.600000e-01 End Time= 9.500000e-01

MAX3 = 7.500000e-01 at time = 1.000000e+00

Measure Start Time= 0.000000e+00 Measure End Time= 1.200000e+00
Fall 1: Start Time= 6.700000e-01 End Time= 1.060000e+00

The MAX1 measure uses the “absolute” mode, so the first rise begins with the very first time-step. The
maximum value in that first rise interval for measure MAX1 then occurs at time=0.2s. The MAX2 measure
uses the “level-crossing” mode with a user-specified REC_LEVEL of 0.6V. So, the first rise interval for the
MAX?2 measure begins at time=0.56s, and the maximum value in that first rise interval occurs at time=0.6s.
The MAX3 measure illustrates an important point. A “fall” is not recorded for the MAX3 measure at t=0.2
seconds, but a “rise” (and “cross”) would be recorded, since the value of V (1) is exactly equal to the
user-specified REC_LEVEL. So, the first fall interval for measure MAX3 begins at time=0.67s, when V(1)
first passes through the user-specified REC_LEVEL of 0.5V.

2.1.18.6. Additional Examples

Pulse width measurements in Xyce can be done as follows, based on this netlist excerpt. This may be
useful for ensemble runs, where the maximum value of a one-shot pulse is not known in advance. The first
syntax uses three measure statements to measure the 50% pulse width, and works with noisy waveforms.
The second syntax uses only one measure statement, but may not always work with noisy waveforms.

* pulse-width measurement example 1

.measure tran riseb50FracMax trig v (1) frac_max=0.5 targ v (1)
.measure tran fallb50FracMax trig v (l) frac_max=1 targ v (1)
.measure tran 50width EQN{rise50FracMax + fall50FracMax}

frac_max=1
frac_max=0.5

* pulse-width measurement example 2

.measure tran 50widthFracMax trig v (l) frac_max=0.50 targ v (l) frac_max=0.50 FALL=]

In some cases, the user may wish to print out both the measure value and measure time (or the value of the
first variable on the .DC line) of a MAX or MIN measure to the .mt 0 file. For a TRAN measure, this can be
done for these two measures with the OUTPUT keyword as follows:

68

* printing maximum value and time of maximum value to .mt0 file
.TRAN 0 1

vi10PWLOOO.5110

R1 1 01

.MEASURE TRAN MAXVAL MAX V(1)

.MEASURE TRAN TIMEOFMAXVAL V(1) OUTPUT=TIME

The output to the .mt 0 file would be:

MAXVAL = 1.000000e+00
TIMEOFMAXVAL = 5.000000e-01

The descriptive output to standard output would be the same for both measures though. The measure value
and measure time are not re-ordered in the descriptive output when OUTPUT=VALUE is used for the MAX
or MIN measures.

MAXVAL = 1.000000e+00 at time = 5.000000e-01
Measure Start Time= 0.000000e+00 Measure End Time= 1.000000e+00

TIMEOFMAXVAL = 1.000000e+00 at time = 5.000000e-01
Measure Start Time= 0.000000e+00 Measure End Time= 1.000000e+00

For a DC measure, one would use OUTPUT=SV instead of OUTPUT=TIME. In that case, the “sweep value”
(SV) is the value of the first variable on the . DC line. For an AC or NOISE measure, one would use
OUTPUT=FREQ.

2.1.18.7. Suppresssing Measure Output

If the Xyce output is post-processed with other programs, such as Dakota, it may be desirable to only print
a subset of the measure values to the .mt # (or .ms# or .ma#) files, but to print all of the measure output
to standard output. As an example, these . MEASURE statements:

.TRAN 0 2ms

.measure tran minSineOne min V(1) print=none
.measure tran minSinTwo min V(2) print=stdout
.measure tran minSinThree min V(3) print=all
.measure tran sinSinFive min V (4)

would produce the following measure output in the .mt 0 file:

MINSINTHREE = -3.851422e-01
MINSINFOUR = -1.998548e+00

and the following measure output in standard output:

69

MINSINTWO = —-1.188589e+00 at time = 7.400000e-04
Measure Start Time= 0.000000e+00 Measure End Time= 2.000000e-03

MINSINTHREE = -3.851422e-01 at time = 2.400000e-04
Measure Start Time= 0.000000e+00 Measure End Time= 2.000000e-03

MINSINFOUR = -1.998548e+00 at time = 7.500000e-04
Measure Start Time= 0.000000e+00 Measure End Time= 2.000000e-03

.OPTIONS MEASURE MEASPRINT=<val> also provides the option to accomplish these same effects,
but for all of the measure statements in the netlist. The interactions between these two features are as
follows. If MEASPRINT=ALL is used, which is the default setting, then the PRINT qualifier on a given
.MEASURE line will override that setting. However, MEASPRINT=NONE and MEASPRINT=STDOUT will
take precedence over the PRINT qualifiers on individual . MEASURE lines. Finally, the MEASPRINT
option will be ignored during remeasure, but the PRINT qualifiers on individual measure lines will be
used.

.OPTIONS MEASURE MEASOUT=<val> provides another way to suppress the output of the .mt # (or
.ms# or .ma#) files. See Section[2.1.25]|for more details. If given, this option takes precedence over the
MEASPRINT option setting. However, it is also ignored during remeasure.

2.1.18.8. ERROR Functions (ERR1 and ERR2)

This subsection defines the calculation functions for the ERR1 and ERR2 measure types. For the ERR1
measure, the measure value is calculated as follows, where M; and C; are the first and second variables on
the measure line and N is the number of time, frequency or DC sweep values included in the measure

calculation:
1 M;—C; 2
ERR1 = | — 2.1
\/N ; (max(MINVAL, | M; \)) @1

For the ERR2 measure, the value is:

1 N

ERR2 = —
v

(2.2)

M;—C;
max(MINVAL,| M; |)

For both measures, if the absolute value of M; is less than the YMIN value or greater than the YMAX value
then the ERR1 or ERR2 calculation does not consider that point. The default for YMIN is 1.0-e15. The
default for YMAX is 1.0el5.

2.1.18.9. ERROR Measure

The Xyce ERROR measure is not the functional equivalent of the ERR1 or ERR2 measures. It is intended
to solve a different problem, namely the comparison of data in multiple simulation runs to an assumed
“gold standard” read in from a file. It also uses different comparision functions then the ERR1 and ERR2
measures.. This subsection lists some important caveats with the use of the ERROR measure.

70

* The comparison file, specified with the FILE qualifier, can be .prn, .csv and . csd formatted
output data. However, the ERROR measure might only work with . csv and . csd files generated by
Xyce.

* The data in the comparison file is assumed to be “non-step data”, from one simulation iteration. The
simulated data can use . STEP though and the ERROR measure values will be re-evaluated for each
step.

* For TRAN (or AC or NOISE) measures, the values of the measured waveform are interpolated to the
simulation times (or frequencies) in the comparison waveform. So, the norm calculation is inherently
windowed to the time (or frequency) interval of the comparison waveform. For the best interpolation
results for AC or NOISE measures, it is recommended that the frequency extent of the comparison
waveform be greater than or equal to the frequency extent of the measured waveforms.

* For DC measures, interpolation is not used. So, the values of the simulated and comparion
waveforms are compared at the values specified by the DEPVARCOL qualifier. Any value for the
INDEPVARCOL qualifier specified on a DC measure line will be “silently ignored”.

* The time and frequency window constraints (TO, FROM and TD qualifiers) are not supported for the
ERROR measure. So, as noted above, the effective window for the norm calculation is set by the
extent of the comparison waveform.

* The values in the column in the comparison file specified with the INDEPVARCOL qualifier must be
monotonically increasing for a TRAN, AC or NOISE measure. Otherwise, Xyce will not run the
simulation.

* The ERROR measure currently supports the L1, L2 and INFNORM, with the default being the L.2
norm. If anything other than L1, L2 or INFNORM is specified, Xyce will default to the L2 norm.
The descriptive output for each ERROR measure, that is printed to standard output, will explicitly
state which norm was used for each ERROR measure. (Note: The norm value is selected with the
COMP_FUNCTION qualifier, and the allowed values are L1NORM, L2NORM and INFNORM.)

As a final note, the ERROR measure can enable the use of Xyce simulation output in optimization
problems, like device calibration. However, for internal Sandia users, there may be better approaches that
leverage the combined capabilities of Sandia’s Dakota and Xyce software packages.

2.1.18.10. Operator Support for AC Mode Measures

All of the operators supported on . PRINT AC lines are supported for AC measure mode. The linear
parameter operators (e.g., SR (1, 1)) are only supported when a . LIN analysis is done, but their values
can be used in . MEASURE AC statements in that case.

One caveat is that AC mode measures that use V (a) will actually measure VR (a) . The same caveat
applies to the use of S (1, 1) . An AC mode measure would measure SR (1, 1) instead.

2.1.18.11. Operator Support for NOISE Mode Measures

All of the operators supported on . PRINT NOISE lines are supported for NOISE measure mode. One
caveat is that NOISE mode measures that use V (a) will actually measure VR (a) .

71

2.1.18.12. Behavior for Unsupported Modes and Types

The .MEASURE statement is supported for . TRAN, .AC, .DC and .NOISE analyses. It can be used with

. STEP in all four cases. So, Xyce does not support HB measure mode. If that mode is included in the
netlist then Xyce parsing will fail and emit error messages. Similarly, Xyce parsing will fail if the requested
measure type is not supported for a given measure mode (e.g., OFF__TIME for a AC, DC or NOISE
measure).

2.1.18.13. Compatibility with .DATA

The .DATA command can be used to specify table-based .AC, .DC or .NOISE sweeps for those three
analysis types. For AC and NOISE measures, the “swept variable” then uses the frequency values in the
table specified on the . AC or .NOISE line.

For DC measures, the swept variable uses the row index in the table specified on the . DC line. An example
is as follows:

* example of .DATA with DC measures
vli 101
R1 121
R2 2 01

.data test

+ rl r2
+ 1.0e+00 4.0e+00
+ 4.0e+00 6.0e+00
+ 6.0e+00 4.0e+00
.enddata

.DC data=test
.print DC V(1) V(2)

.OPTIONS MEASURE MEASDGT=1
.MEASURE DC MAXV2TO MAX V(2) TO=2
.MEASURE DC MAXV2FROM MAX V(2) FROM=2

.END

The measure results reported in stdout will be as follows where the respective maximum values occur for
the R1 and R2 values given in the first and second rows of the test table:

MAXV2TO = 8.0e-01 at Table Row value = 1.0e+00
Measure Start Table Row Value= 1.0e+00 Measure End Table Row Value= 2.0e+00

MAXV2FROM = 6.0e—-01 at Table Row value = 2.0e+00
Measure Start Table Row Value= 2.0e+00 Measure End Table Row Value= 3.0e+00

72

All valid measure types will return an answer when a data-based sweep is used on the . AC, .DC or
.NOISE line. However, the results for AVG, DERIV, FIND, INTEG, RMS and WHEN measures may be
“non-physical” if the frequency values in the data table are not monotonically increasing. In addition, for
DC measures the effective step size between table rows is equal to one.

2.1.18.14. HSPICE Compatibility

There are known incompatibilities between the Xyce and HSPICE implementation of . MEASURE. They
include the following:

* Since .AC and .NOISE are separate analysis types in Xyce, there are separate AC and NOISE
measure modes.

» Several of the Xyce measure types (DUTY, EQN, FREQ, FOUR, ON_TIME, and OFF_TIME) and
qualifers (e.g., FRAC_MAX) are not found in HSPICE. Several HSPICE measures are not supported
in Xyce.

* The HSPICE qualifers of REVERSE and PREVIOUS are not supported in Xyce.

e The HSPICE . POWER statement, which prints out a table with the AVG, RMS, MIN and MAX
measures for each specified signal, is not supported in Xyce.

* Xyce generally supports more qualifiers (FROM, TO, TD, RISE, FALL and CROSS) for the
measurement windows for a given measure-type. So, some legal Xyce syntaxes may not be legal in
HSPICE.

* For TRIG and TARG clauses in Xyce, the TD qualifier applies to both the TRIG and TARG qualifiers.
HSPICE allows the specification of separate time-delays for the TRIG and TARG clauses.

* Xyce will not return a negative value from a TRIG and TARG measure. The TARG clause is only
evaluated if the TRIG clause is satisfied. This behavior is different from HSPICE.

* The Xyce EQN measure can calculate an expression based on other measure values. So, one of its
usages is similar to the HSPICE PARAM measure. However, their syntaxes are different.

* A mismatch between the measure mode and the analysis mode (e.g., a DC measure in a netlist that
uses a . TRAN analysis statement) will cause a Xyce netlist parsing error. That same mismatch might
be silently ignored by HSPICE.

* How Xyce and HSPICE handle “steps” may be different. In Xyce, the “steps” in the measured data
(e.g., the generation of new .mt# or .ms# or .ma# files) are triggered by the variable(s) on the
. STEP line, but not by the variable(s) on the .DC line.

» Expressions on . MEASURE lines are supported in fewer contexts then in HSPICE. See the
“Expression Support” subsection for more details.

* The settings for the MEASFAIL and MEASOUT options are only used if those options are explicitly
given in the netlist. Otherwise, the Xyce defaults will be used.

Additional syntax differences between TRIG and TARG clauses in Xyce and HSPICE are as follows. In
HSPICE, a RISE, FALL or CROSS keyword must be specified in the following measure statement. Those
RISE keywords are optional with this particular syntax example in Xyce. If they are omitted, then Xyce
uses a default value of 1.

73

.measure tran riseSine trig v(1)=0.01 RISE=1 targ v(1)=0.99 RISE=1

The following HSPICE syntax (VAL=0. 9) is supported in Xyce for TRIG and TARG measures. However,
the preferred Xyce syntax would use targ v (1)=0.9 instead.

.measure tran riseSine trig v(l) AT=0.0001 targ v(l) VAL=0.9 RISE=1

The remainder of this subsection discusses alternate syntaxes for Xyce measure lines that are supported for
improved HSPICE compatibility. The definitions of the measure syntaxes given at the beginning of this
.MEASURE section give the preferred Xyce syntaxes. However, PARAM (and the equivalent EQN) measure
lines are allowed with, or without, the equal sign after the PARAM keyword. So, these two Xyce measure
statements are equivalent:

.measure tran nokEqualSgn PARAM {v(1)+1.0}
.measure tran equalSgn PARAM={v (1l)+1.0}

There are multiple expression syntaxes that are allowed in various contexts on HSPICE measure lines. So,
all of these example syntaxes are allowed in expression contexts on Xyce measure lines. (Note: Only the
first single-quote-delimited expression format is supported in all Xyce expression contexts, in addition to
the Xyce curly-braces format.)

.measure tran curlyBraces MAX {V(1l)+1}
.measure tran singleQuote MAX ‘V(1)+1’
.measure tran parenSingleQuote MAX (‘V(1)+1')
.measure tran parSyntax MAX PAR('V(1l)+1")

Undelimited expressions are allowed in some contexts in HSPICE. However, the syntax for the
notLegallnXyce measure shown below is not allowed in Xyce, since it uses an undelimited expression.

.measure tran PLUS PP PAR('V (1)+V(2)")
.measure tran notLegalInXyce PARAM PLUS+2.0 ; not legal

74

2.1.19. .MEASURE (Continuous results)

“Continuous” measure results are supported for DERIV-AT, DERIV-WHEN, FIND-AT, FIND-WHEN and
WHEN measures, for . TRAN, .DC, .AC and .NOISE analyses. They are identical to the “non-continuous”
versions, except that they can return more than one measured value in some cases. Continuous measure
mode is not supported for TRIG or TARG measures.

General Form .MEASURE <AC_CONT |DC_CONT |NOISE_CONT|TRAN_CONT> <result name>
+ DERIV <variable> AT=<value>
+ [MINVAL=<value>] [DEFAULT_VAL=<value>]
+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN_CONT <result name>

+ DERIV <variable> WHEN <variable>=<variablejs>|<value>

+ [MINVAL=<value>] [FROM=<value>] [TO=<value>] [TD=<value>]
+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC_CONT |DC_CONT|NOISE_CONT> <result name>
+ DERIV <variable> WHEN <variable>=<variablej;>|<value>

+ [MINVAL=<value>] [FROM=<value>] [TO=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]

+ [DEFAULT_VAL=<value>] [PRECISION=<value>] [PRINT=<value>]
.MEASURE <AC_CONT |DC_CONT |NOISE_CONT|TRAN_CONT> <result name>
+ FIND <variable> AT=<value>

+ [MINVAL=<value>] [DEFAULT_VAL=<value>]

+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN_CONT <result name>
+ FIND <variable> WHEN <variable>=<variablej;>|<value>
+ [FROM=<value>] [TO=<value>] [TID=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]

+ [MINVAL=<value>] [DEFAULT_VAL=<value>]

+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE <AC_CONT |DC_CONT |NOISE_CONT> <result name>
+ FIND <variable> WHEN <variable>=<variable;>|<value>
+ [FROM=<value>] [TO=<value>]

+ [RISE=r|LAST] [FALL=f|LAST] [CROSS=c|LAST]

+ [MINVAL=<value>] [DEFAULT_VAL=<value>]

+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE TRAN_CONT <result name>

WHEN <variable>=<variable)>|<value>

[FROM=<value>] [TO=<value>] [TD=<value>]

[RISE=r |LAST] [FALL=f|LAST] [CROSS=c|LAST]
[MINVAL=<value>] [DEFAULT_VAL=<value>]

+ o+ + o+

75

+ [PRECISION=<value>] [PRINT=<value>]

MEASURE <AC_CONT|DC_CONT |NOISE_CONT> <result name>
+ WHEN <variable>=<variable;>|<value>
[FROM=<value>] [TO=<value>]

[RISE=r |LAST] [FALL=f|LAST] [CROSS=c|LAST]
[MINVAL=<value>] [DEFAULT VAL=<value>]
[

+
+
+
+ [PRECISION=<value>] [PRINT=<value>]

Examples

.MEASURE TRAN_CONT DERIVI1At5 DERIV V(1) AT=5
.MEASURE DC_CONT deriv2 DERIV WHEN V(2)=0.75
.MEASURE AC_CONT findlatb FIND V(1) AT=5

.MEASURE NOISE_CONT findl FIND V(1) WHEN V(2)=1 RISE=2

.MEASURE TRAN_CONT whenvl WHEN V(1)=5

Arguments and

Options result name

Measured results are reported to the log file and (possibly) multiple output
files. Section [2.1.19.T|below gives more information on the output files
produced by continuous mode measures.

The <result name> must be a legal Xyce character string. If multiple
measures are defined with the same <result name> then Xyce uses the
last such definition, and issues warning messages about (and discards) any
previous measure definitions with the same <result name>.

measure type

DERIV, FIND, WHEN

The third argument specifies the type of measurement or calculation to be
done.

By default, the measurement is performed over the entire simulation. The
calculations can be limited to a specific measurement window by using the
qualifiers FROM, TO, TD, RISE, FALL, CROSS and MINVAL, which are
explained below and in section[2.1.18].

The supported “continuous” measure types and their definitions are:

DERIV Computes the derivative of <variable> at a user-specified time
(by using the AT qualifier) or when a user-specified condition occurs
(by using the WHEN qualifier). If the WHEN qualifier is used then the
measurement window can be limited with the qualifiers FROM, TO,
RISE, FALL and CROSS for all measure modes. In addition, the TD
qualifier is supported for TRAN_CONT measures. The MINVAL qualifier
is used as a comparison tolerance for both AT and WHEN. For HSPICE
compatibility, DERIVATIVE is an allowed synonym for DERIV.

FIND-AT Returns the value of <variable> at the time when the AT
clause is satisfied. The AT clause is described in more detail later in this

76

list.

FIND-WHEN Returns the value of <variable> at the time when the
WHEN clause is satisfied. The WHEN clause is described in more detail
later in this list.

WHEN Returns the time (or frequency or DC sweep value) when
<variable> reaches <variable,> or the constant value, value.
The measurement window can be limited with the qualifiers FROM, TO,
RISE, FALL and CROSS for all measure modes. In addition, the TD
qualifier is supported for TRAN_CONT measures. The qualifier
MINVAL acts as a tolerance for the comparison. For example when
<variable,> is specified, the comparison used is when
<variable> = <variablej;> & MINVAL or when a constant,
value is given: <variable> = value 4+ MINVAL. If the
conditions specified for finding a given value were not found during the
simulation then the measure will return the default value of —1. The
user may change this default value with the DEFAULT_VAL qualifier.
Note: The use of FIND and WHEN in one measure statement is also
supported.

variable

variable,

value
These quantities represents the test for the stated measurement.
<variable> is a simulation quantity, such as a voltage or current. One can
compare it to another simulation variable or a fixed quantity. Additionally,
the <variable> may be a Xyce expression delimited by { } brackets. As
noted above, an example is V (2) =0.75

Additional information on the TO, FROM, TD, RISE, FALL, CROSS, MINVAL,
DEFAUAL_VAL, PRECISION and PRINT qualifiers is given in section[2.1.18]

2.1.19.1. Measure Output

As discussed in section [2.1.18.1] measured results for AC, DC, NOISE and TRAN mode measures are
reported to the log file. Additionally, for TRAN measures, the results are stored in files called
circuitFileName.mt #, where the suffixed number (#) starts at 0 and increases for multiple iterations
(. STEP iterations) of a given simulation. For DC measures, the results are stored in the files
circuitFileName.ms#, while AC and NOISE measures use the files circuitFileName.ma#.

For AC_CONT, DC_CONT, NOISE_CONT and TRAN_ CONT mode measures, the output for successful and
failed measures is sent to the standard output (and log files), as described in section [2.1.18.1] There are two
options for the output files though. The default is for each continuous mode measure to generate its own
output file where, for example for a non-step transient analysis, the file name would be
circuitFileName_resultname.mt0 where the result (measure) name is always output in
lower-case. This default matches HSPICE. The second option uses . OPTIONS MEASURE
USE_CONT_FILES=0. In that case, the results for all of the continuous mode measures are sent to the
circuitFileName.mt# file.

77

An example is as follows.

VPWL1I 1 0 pwl(0O O 2.5m 1 5m O 7.5m 1 10m O)
R1 101

.TRAN 0 10ms
.PRINT TRAN V(1)

.MEASURE TRAN MAXV1 MAX V(1)
.MEASURE TRAN_CONT FindVl WHEN V(1)=0.5
.MEASURE TRAN_CONT FindV1AT FIND V(1) AT=0.6ms

.END

The result for measure MAXV1 is sent to <net1istName>.mt 0. The results for measures Findv1 and
FindV1AT are then sent to individual files, named <netlistName>_ findvl.mtO0 and
<netlistName>_findvlat.mtO. Note that the measure names have been lower-cased in the output
file names. The contents of those files are then as follows.

FINDV1 = 1.250000e-03
FINDV1 = 3.750000e-03
FINDV1 = 6.250000e-03
FINDV1 = 8.750000e-03
and:

FINDV1IAT = 2.400000e-01

Note that FIND-AT measures will still only return one measure value, even for TRAN_CONT measure
mode. However, in this simple example, the specified F IND-WHEN measure returns all four times where
V (1) equals 0.5. The next subsection will describe how the RISE, FALL and CROSS qualifiers can used
to return only a subset of those four crossings.

2.1.19.2. RISE, FALL and CROSS Qualifiers

Xyce supports both positive and negative values for the RISE, FALL and CROSS qualifiers. However, their
interpretation is slightly different for TRAN and TRAN_CONT measure modes, as illustrated by the
following netlist for the TRAN_CONT measure mode and WHEN measure. The rules are then the same for
the other continuous measures modes and the RISE and FALL qualifiers.

VPWL1 1 0 pwl(0 O 2.5m 1 5m O 7.5m 1 10m O)
Rl1 1 01

.TRAN 0 10ms
.PRINT TRAN V(1)

78

.MEASURE TRAN FindV1l_CROSS3 WHEN V(1)=0.5 CROSS=3
.MEASURE TRAN_CONT FindV1_CONT_CROSS3 WHEN V(1)=0.5 CROSS=3

.MEASURE TRAN FindV1l_CROSS_NEG3 WHEN V (1)=0.5 CROSS=-3
.MEASURE TRAN_CONT FindV1_CONT_CROSS_NEG3 WHEN V(1)=0.5 CROSS=-3

.END

The <netlistName>.mtO0 file will contain the results for both TRAN mode measures. The result for the
FindvV1_CROSS3 is the time of the third crossing. The result for the Findv1l_CROSS_NEG3 is the time
of the second crossing, which is also the “third to last” (or negative third) crossing in this case.

FINDV1_CROSS3 = 6.250000e-03
FINDV1_CROSS_NEG3 = 3.750000e-03

The <netlistName>_findvl_cont_cross3.mt0 output file will have two values. For
non-negative values of CROSS, a TRAN_CONT measure will return all crossings, starting with the specified
value. This is the third and fourth crossings in this case.

6.250000e-03
8.750000e-03

FINDV1_CONT_CROSS3
FINDV1_CONT_CROSS3

For negative values of CROSS, a TRAN_CONT measure will only return one value. That is the third-to-last
crossing in this case. So, the <net1listName>_findvl_cont_cross3_neg3.mt0 file only has one
value in it. As a final note, a CROSS value of either 5 or -5 would produce failed measures in this

example.

FINDV1_CONT_CROSS_NEG3 = 3.750000e-03

2.1.19.3. HSPICE Compatibility

There are known incompatibilities between the Xyce and HSPICE implementation of . MEASURE. They
include the following:

« TBD

79

2.1.20. .MEASURE FFT (Measure output for .FFT)

The .MEASURE FFT statement allows calculation or reporting of simulation metrics, from data
associated with .FFT analyses, to an external file as well as to the standard output and/or a log file, So, it is
only supported for . TRAN, analyses. It can be used with . STEP. For HSPICE compatibility, . MEAS is an

allowed synonym for . MEASURE.

The syntaxes for the . MEASURE FFT statements are shown below.

General Form .MEASURE FFT <result name> ENOB <variable>
+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

.MEASURE FFT <result name> EQN <variable>
+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

[BINSIZ=<value>]

[PRINT=<value>]

[PRINT=<value>]

.MEASURE FFT <result name> FIND <variable> AT=<value>
+ [PRECISION=<value>] [PRINT=<value>]

.MEASURE FFT <result name> SFDR <variable>
+ [MINFREQ=<value>] [MAXFREQ=<value>] [BINSIZ=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

.MEASURE FFT <result name> SNDR <variable>
+ [DEFAULT VAL=<value>] [PRECISION=<value>]

.MEASURE FFT <result name> SNR <variable>

+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

.MEASURE FFT <result name> THD <variable>
+ [NBHARM=<value>] [MAXFREQ=<value>]
+ [DEFAULT_VAL=<value>] [PRECISION=<value>]

[PRINT=<value>]

[BINSIZ=<value>]
[PRINT=<value>]

[MAXFREQ=<value>]

[PRINT=<value>]

[PRINT=<value>]

Examples FFT V(1)

.MEASURE
.MEASURE
.MEASURE
.MEASURE
.MEASURE
.MEASURE
.MEASURE

NP=

FFT
FFT
FFT
FET
FFT
FET
FFT

16

ENOBVAL ENOB V(1)
EQNVAL EQN VRIAT2
VR1IAT2 VR (1) AT=2
SFDRVAL SFDR V(1)
SNDRVAL SNDR V(1)
SNRVAL SNR V(1)
THDVAL THD V(1)

Arguments and

Options result name
Measured results are reported to the output and log file. Additionally, the
results are stored in files called circuitFileName .mt#, where the
suffixed number (#) starts at O and increases for multiple iterations (. STEP

80

iterations) of a given simulation. Each line of this file will contain the
measurement name, <result name>, followed by its value for that run.
The <result name> must be a legal Xyce character string.

If multiple measures are defined with the same <result name> then
Xyce uses the last such definition, and issues warning messages about (and
discards) any previous measure definitions with the same <result
name>.

measure type
ENOB, EQN, FIND, SFDR, SNDR, SNR, THD

The third argument specifies the type of measurement or calculation to be
done. By default, the measurement is performed over the time window
defined by the START and STOP parameters on the associated .FFT line.
So, the FROM, TO and TD qualifiers have no effect on FFT-based measures.

The supported measure types are:

ENOB Calculates the “Effective Number of Bits”, where that metric is
defined in Section 2.1.8.3] which covers the . FF'T command.

EQN Calculates the value of <variable> during the simulation. That
variable can use the results of other measure statements. PARAM is an
allowed synonym for EQN as a measure type. For FF'T measure mode,
an EQN measure will be reported as “failed” until the associated FFT
has been calculated.

FIND Returns the requested FFT cofficient at the requested frequency.
Examples of the mapping of Xyce operators (e.g., VM and IM) to FFT
cofficients is given in the “Additional Examples” subsection below.
FIND measures can be also used in conjunction with EQN measures to
generate fairly arbitrary FFT-based measures. The F IND measure for
FFT measure mode does not support expressions, or the P and W
operators. It also does not support multi-terminal lead current operators,
such as IC ().

SFDR Calculates the “Spurious Free Dynamic Range”, where that metric is
defined in Section 2.1.8.3]

SNDR Calculates the “Signal to Noise-plus-Distortion Ratio”, where that
metric is defined in Section 2.1.8.3

SNR Calculates the “Signal to Noise Ratio”, where that metric is defined in
Section

THD Calculates the “Total Harmonic Distortion”, where that metric is
defined further below and also in in Section[2.1.8.3]

variable
The <variable> is a simulation quantity, such as a voltage or current.
Additionally, the <variable> may be a Xyce expression delimited by { }
brackets. The only constraint is that the variable on the . MEASURE
FFT line must be an exact match for the ov on at least one .FFT line in the
netlist. If there are multiple . FFT lines in the netlist with the same ov then

81

the corresponding . MEASURE FFT statements will use the first such one.

AT=value
A frequency at which the measurement calculation will occur. This is used
by the F IND measure only. The entered AT value will be rounded to the
nearest harmonic frequency, as defined by the FREQ, START and STOP
parameters on the associated . FFT line. An AT value that rounds to a
harmonic frequency of less than zero, or to more than NP /2, will produce a
failed measure in Xyce, where NP is the number of points specified on the
associated . FFT line.. The behavior of these "failed” cases may differ from
commercial simulators.

BINSIZ=value
This parameter is implemented in Xyce for the ENOB, SFDR and SNDR
measure types. It can be used to account for any “broadening” of the spectral
energy in the first harmonic of the signal, as discussed below. BINSIZ has a
default value of 0.

DEFAULT_VAL=value
If the conditions specified for finding a given value are not found during the
simulation then the measure will return the default value of -1 in the
circuitFileName.mt# file. The measure value in the standard output
or log file will be FAILED. The default return value for the
circuitFileName.mt# file is settable by the user for each measure by
adding the qualifier DEFAULT_VAL=<retval> on that measure line. If
either .OPTIONS MEASURE MEASFAIL=<val>or .OPTIONS
MEASURE DEFAULT_VAL=<val> are given in the netlist then those
values override the DEFAULT_ VAL parameters given on individual
.MEASURE FFT lines. See Section [2.1.25]for more details.

MAXFREQ=value
The maximum frequency over which to perform a SFDR, SNR or THD
measure. The entered MAXFREQ value will be rounded to the nearest
harmonic frequency, as defined by the FREQ, START and STOP parameters
on the associated . FFT line. The default value is NP /2, where NP is the
number of points specified on the associated . FFT line.

MINFREQ=value
The minimum frequency over which to perform a SEDR or THD measure.
The entered MINFREQ value will be rounded to the nearest harmonic
frequency, as defined by the FREQ, START and STOP parameters on the
associated . FFT line. The default value is 1.

NBHARM=value
The maximum (integer) number of harmonics over which to perform a THD
measure. The default value is NP /2. The NBHARM qualifier has precedence
over the MAXFREQ qualifier if both are given on a . MEASURE line.

PRECISION=value
The default precision for . MEASURE output is 6 digits after the decimal
point. This argument provides a user configurable precision for a given
.MEASURE statement that applies to both the . mt # file and standard

82

output. If .OPTIONS MEASURE MEASDGT=<val> is given in the netlist
then that value overrides the PRECISION parameters given on individual
.MEASURE lines.

PRINT=value
This parameter controls where the . MEASURE output appears. The default
is ALL, which produces measure output in both the .mt # and the standard
output. A value of STDOUT only produces measure output to standard
output, while a value of NONE suppresses the measure output to both the
.mt # file and standard output.

2.1.20.1. Measure Definitions

The ENOB, SNDR, SNR and SFDR measure types use the same definitions as the metrics produced by
.FFET lines. Section[2.1.8.3] provides more details on those definitions. (Note: The MAXFREQ and
MINFREQ qualifiers from the .MEASURE FFT lines are mapped into the FMAX and FMIN parameters
used in those equations.) There are two exceptions.

The first exception is the THD measure. If the optional NBHARM qualifier is not used then the definition
given in Section [2.1.8.3]is used. If the NBHARM qualifier is used then it takes precedence over the
MAXFREQ qualifier. The THD measure definition is then as follow. Let fj be the integer index of the “first
harmonic” (fy), as defined in Section [2.1.8.3] from the associated . FF'T line. Then the effective value of
the upper frequency limit (f>) in the THD calculation is NBHARM. fjy, with the caveat that all of the
harmomics will be used if NBHARM < 0 or NBHARM > NP/ 2.

The second exception is the BINSIZ qualifier for the ENOB, SFDR and SNDR measures. For a non-zero
value of BINSIZ, the “signal power” is considered to reside in the harmonic indexes between (fp=+
BINSIZ), where the DC value is still excluded from the measure calculations. (Note: This definition for
BINSIZ may differ from HSPICE.)

2.1.20.2. Re-Measure

Xyce can re-calculate (or re-measure) the values for . MEASURE FFT statements using existing Xyce
output files. Section [2.1.18.4] discusses this topic in more detail for both . MEASURE and .FFT
statements.

2.1.20.3. Additional Examples

This section provides a simple example how to use the F IND measure, along with the V (), VR (), VI (),
VM (), VP () and VDB () operators, to obtain the real and imaginary parts of the FFT coefficients, along
with the magnitude and phase of those coefficients, at a specified frequency. Those coefficient values are
unnormalized.

* Example of obtaining FFT coefficients
.TRAN 0 1

.PRINT TRAN V(1)

.OPTIONS FFT FFT_ACCURATE=1 FFTOUT=1

83

vli 101
R1 101
LFEFT V(1) NP=8 WINDOW=HANN

* Unnormalized one—-sided FFT cofficients for V(1) at F=1.0
* Magnitude

.MEASURE FFT VI1AT1 FIND V(1) AT=1.0

* Real part

.MEASURE FFT VR1AT1 FIND VR(1l) AT=1.0

* Imaginary part

.MEASURE FFT VI1AT1 FIND VI(1l) AT=1.0

* Magnitude

.MEASURE FFT VMIAT1 FIND VM(1l) AT=1.0

* Phase

.MEASURE FFT VP1AT1l FIND VP (1) AT=1.0

* Magnitude in dB

.MEASURE FFT VDB1AT1 FIND VDB(1l) AT=1.0

.END

The .MEASURE output is then:

FINDVIAT1 = 5.200051e-01
FINDVRIATI1 -4.804221e-01
FINDVIIAT1 = -1.989973e-01

FINDVMIAT1I = 5.200051e-01
FINDVP1AT1 = -1.575000e+02
FINDVDBIAT]1 = -5.679847e+00

84

2.1.21. .MODEL (Model Definition)

The .MODEL command provides a set of device parameters to be referenced by device instances in the
circuit.

General Form .MODEL <model name> <model type> (<name>=<value>)x*

Examples .MODEL RMOD R (RSH=1)
.MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS
.MODEL NFET NMOS (LEVEL=1 KP=0.5M VTO=2V)

Arguments and

Options model name
The model name used to reference the model.

model type
The model type used to define the model. This determines if the model is
(for example) a resistor, or a MOSFET, or a diode, etc. For transistors, there
will usually be more than one type possible, such as NPN and PNP for BJTs,
and NMOS and PMOS for MOSFETs.

name
value
The name of a parameter and its value. Most models will have a list of
parameters available for specification. Those which are not set will receive
default values. Most will be floating point numbers, but some can be integers
and some can be strings, depending on the definition of the model.

Comments The scoping rules for models are:

e If a .MODEL, statement is included in the main circuit netlist, then it is
accessible from the main circuit and all subcircuits.

* .MODEL statements defined within a subcircuit are scoped to that subciruit
definition. So, their models are only accessible within that subcircuit definition,
as well as within “nested subcircuits” also defined within that subcircuit
definition.

Additional illustative examples of scoping are given in the “Working with Subcircuits
and Models” section of the Xyce Users’ Guide [1] .

A model name can be the same as a device name in Xyce. However, that usage will
generate a warning message during netlist parsing. The reason is that it can lead to
ambiguous .PRINT lines when a model parameter and instance parameter, for a
given device, have the same name but a different meaning. For example, R1 could be
used as both a resistor device-name, and as a resistor model-name. However, . PRINT
TRAN R1:R would then be ambiguous. In addition, the use of duplicate model and
device names is not recommended if those names will be used within a Xyce
expression since that can result in an ambiguous expression.

85

2.1.21.1. LEVEL Parameter

A common parameter is the LEVEL parameter, which is set to an integer value. This parameter will define
exactly which model of the given type is to be used. For example, there are many different available
MOSFET models. All of them will be specified using the same possible names and types. The way to
differentiate (for example) between the BSIM3 model and the PSP model is by setting the appropriate
LEVEL.

2.1.21.2. Model Binning

Model binning is supported for MOSFET models. For model binning, the netlist contains a set of similar
.MODEL cards which correspond to different sizing information (length and width). They are similar in that
they are for the same model (and same LEVEL number), and have the same prefix. They are different in that
they have different 1min, 1lmax, wmin, wmax parameters, and the name suffix will be the bin number.
For a MOSFET device instance, Xyce will automatically select the appropriate binned model, based on the
L and W parameters of that instance. It will only seach the models with matching name prefixes, and can
only work if all the binned models have specified all the 1min, Imax, wmin, wmax parameters.

Model binning is enabled by default. To disable it, specify .options parser
model_binning=false.

* Model binning example adapted from the BSIM4 tests

ml 2 1 0 b nch L=0.11u W=10.1lu NF=5 rgeomod=1 geomod=0
vgs 1 1.2
vds 2 1.2
Vb b 0 0.0

0
0

.dc vds 0.0 1.21 0.02 vgs 0.2 1.21 0.2
.print dc v(2) v (1) i(vds)

* model binning

.model nch.l nmos (level=14
+ Imin=0.1u lmax=20u

+ wmin=0.1lu wmax=10u)
.model nch.2 nmos (level=14
+ Imin=0.1lu lmax=20u

+ wmin=10u wmax=100u)

.end

Figure 2-1. Model Binning Example

2.1.21.3. Model Interpolation

NOTE: The temperature interpolation model described in this section has been deprecated and may
be removed in a future version of Xyce.

86

Traditionally, SPICE simulators handle thermal effects by coding temperature dependence of model
parameters into each device. These expressions modify the nominal device parameters given in the
.MODEL card when the ambient temperature is not equal to TNOM, the temperature at which parameters
were extracted.

These temperature correction equations may be reasonable at temperatures close to TNOM, but Sandia
users of Xyce have found them inadequate when simulations must be performed over a wide range of
temperatures. To address this inadequacy, Xyce implements a model interpolation option that allows the
user to specify multiple . MODEL cards, each extracted from real device measurements at a different
TNOM. From these model cards, Xyce will interpolate parameters based on the ambient temperature using
either piecewise linear or quadratic interpolation.

Interpolation of models is accessed through the model parameter TEMPMODEL in the models that
support this capability. In the netlist, a base model is specified, and is followed by multiple models at other
temperatures.

Interpolation of model cards in this fashion is implemented in the BJT level 1, JFET, MESFET, and
MOSEFETS levels 1-6, 10, and 18.

The use of model interpolation is best shown by example:

Jtest la 2a 3 SA2108 TEMP= 40

*

.MODEL SA2108 PJF (TEMPMODEL=QUADRATIC TNOM = 27

+ LEVEL=2 BETA= 0.003130 VIO = -1.9966 PB = 1.046
+ LAMBDA = 0.00401 DELTA = 0.578; THETA = 0;

+ IS = 1.393E-10 RS = le-3)

*

.MODEL SA2108 PJF (TEMPMODEL=QUADRATIC TNOM = -55
+ LEVEL=2 BETA = 0.00365 VIO = -1.9360 PB = 0.304
+ LAMBDA = 0.00286 DELTA = 0.2540 THETA = 0.0

+ IS = 1.393E-10 RD = 0.0 RS = le-3)

*

.MODEL SA2108 PJF (TEMPMODEL=QUADRATIC TNOM = 90

+ LEVEL=2 BETA = 0.002770 VIO = -2.0350 PB = 1.507
+ LAMBDA = 0.00528 DELTA = 0.630 THETA = 0.0
+ IS = 1.393E-10 RS = 5.66)

Note that the model names are all identical for the three . MODEL lines, and that they all specify
TEMPMODEL=QUADRATIC, but with different TNOM. For parameters that appear in all three . MODEL
lines, the value of the parameter will be interpolated using the TEMP= value in the device line, which in
this example is 40°C, in the first line. For parameters that are not interpolated, such as RD, it is not
necessary to include these in the second and third . MODEL lines.

The only valid arguments for TEMPMODEL are QUADRATIC and PWL (piecewise linear). The
quadratic method includes a limiting feature that prevents the parameter value from exceeding the range of
values specified in the . MODEL lines. For example, the RS value in the example would take on negative
values for most of the interval between -55 and 27, as the value at 90 is very high. This truncation is
necessary as parameters can easily take on values (such as the negative resistance of RS in this example)
that will cause a Xyce failure.

87

With the BJT parameters IS and ISE, interpolation is done not on the parameter itself, but on the the log of
the parameter, which provides for excellent interpolation of these parameters that vary over many orders of
magnitude, and with this type of temperature dependence.

The interpolation scheme used for model interpolation bases the interpolation on the difference between
the ambient temperature and the TNOM value of the first model card in the netlist, which can sometimes
lead to poorly conditioned interpolation. Thus it is often best that the first model card in the netlist be the
one that has the “middle” TNOM, as in the example above. This ensures that no matter where in the range
of temperature values the ambient temperature lies, it is a minimal distance from the base point of the
interpolation.

88

2.1.22. . NODESET (Approximate Initial Condition, Bias point)

The .NODESET command sets initial conditions for operating point calculations. It is similar to . IC
(Section[2.1.14)), except it is applied as an initial guess, rather than as a firmly enforced condition. Like
.IC, .NODESET initial conditions can be specified for some or all of the circuit nodes.

Consult the Xyce Users’ Guide [1] for more guidance.

General Form .NODESET < V (<node>)=<value>
.NODESET <node> <value>

Examples .NODESET V (2)=3.1
.NODESET 2 3.1

Comments The Xyce . NODESET command uses a different strategy than either SPICE or
HSPICE. When . NODESET is specified, Xyce does two solves for the DC operating
point. One with the . NODESET values held as initial conditions (i.e., the same as if it
was an .IC solve). The second solve is then done without any conditions imposed, but
with the first solution as an initial guess.

The .NODESET capability can only set voltage values, not current values.

The .NODESET capability can not be used, within subcircuits, to set voltage values
on global nodes.

&9

2.1.23. .No1sE (Noise Analysis)

Calculates the the small signal noise response of a circuit over a range of frequencies. The .NOISE
command can specify a linear sweep, decade logarithmic sweep, octave logarithmic sweep, or a data table
of multivariate values.

General Form .NOISE V (OUTPUT <, REF>) SRC <sweep type> <points value>
+ <start frequency value> <end frequency value>

Examples .NOISE V(5) VIN LIN 101 100Hz 200Hz
.NOISE V(5,3) V1 OCT 10 1kHz 16kHz
.NOISE V (4) V2 DEC 20 1IMEG 100MEG
.NOISE V (4) V2 DATA=<table name>

Arguments and

Options V (OUTPUT <, REF>)
The node at which the total output noise is desired. If REF is specified, then
the noise voltage V(OUTPUT) - V(REF) is calculated. By default, REF is
assumed to be ground.

SRC
The name of an independent source to which input noise is referred.

sweep type
Must be LIN, OCT, or DEC, as described below.

LIN Linear sweep
The sweep variable is swept linearly from the starting to the ending
value.

OCT Sweep by octaves
The sweep variable is swept logarithmically by octaves.

DEC Sweep by decades
The sweep variable is swept logarithmically by decades.

DATA Sweep values from a table
Sweep variables are applied based on the rows of a data table. This
format allows magnitude and phase to be swept in addition to
frequency. If using this format, then the V (OUTPUT <, REF>) and
SRC arguments are still needed on the . NOISE line.

points value
Specifies the number of points in the sweep, using an integer greater than or
equal to 1.

start frequency value

end frequency value
The end frequency value must not be less than the start frequency value, and
both must be greater than zero. The whole sweep must include at least one
point.

90

Comments

Noise analysis is a linear analysis. The simulator calculates the noise response by
linearizing the circuit around the bias point.

If specifying the sweep points using the DATA type, one can also sweep the
magnitude and phase of an AC source, as well as the values of linear model
parameters. However, unlike the use of DATA for . STEP and .DC, it is not possible
to sweep nonlinear device parameters. This is because changing other nonlinear
device parameters would alter the correct DCOP solution, and the NOISE sweep
happens after the DCOP calculation in the analysis flow. To sweep a nonlinear device
parameter on a NOISE problem, add a . STEP command to the netlist to provide an
outer parametric sweep around the analysis.

If .DATA is used with . NOISE then the integrals for the total input noise and total
output noise will only be calculated, and sent to stdout, if the frequencies in the data
table are monotonically increasing.

A .PRINT NOISE must be used to get the results of the NOISE sweep analysis. See
Section 2. 1.311

Noise analysis is a relatively new feature to Xyce, so not all noise models have been
supported.

Power calculations (P (<device> and W (<device>) are not supported for any
devices for noise analysis. Current variables (e.g., I (<device>) are only supported
for devices that have “branch currents” that are part of the solution vector. This
includes the V, E, H and L devices. It also includes the voltage-form of the B device.

91

2.1.24.

. OP (Bias Point Analysis)

The .OP command causes detailed information about the bias point to be printed.

General Form

.OP

Comments

This type of analysis can be specified by itself, in which case Xyce will run a nominal
operating point. However, if specified with another analysis type, no additional
operating point will be calculated, as most analyses require a DC operating point for
initialization.

. OP outputs the parameters for all the device models and all the device instances

present in the circuit. For large circuits, this can be a very large amount of output, so
use with caution.

If no analysis command is provided, . OP will run a DC Operating Point calculation
(i.e., a DC analysis) with all the voltage sources left at their nominal (instance line)
values.

The Xyce . OP statement may provide less, or different, output than other simulators.
For some of the missing quantities, a Xyce . PRINT line can give similar information.
Nodal voltages are always available on a . PRINT line. Device currents for many
devices are available on a . PRINT line using the lead current notation

(I (devicename)). Similarly, device power is available on a .PRINT line via

P (devicename) or W (devicename). However, these capabilities are not
supported in all devices. Table [2-35|shows which devices support these lead current
and power notations. Currently, there is no way to print out internal capacitances.

92

2.1.25. . OPTIONS Statements

Set various simulation limits, analysis control parameters and output parameters. In general, they use the

following format:

General Form .OPTIONS <pkg>

[<name>=<value>] %

Examples

.OPTIONS TIMEINT ABSTOL=1E-8

Arguments and
Options
pkg

DEVICE
TIMEINT
NONLIN
NONLIN-TRAN
NONLIN-HB
LOCA
LINSOL
LINSOL-HB
LINSOL-AC
OUTPUT
RESTART

SAMPLES

EMBEDDEDSAMPLES

PCES
SENSITIVITY
HBINT

DIST
MEASURE
PARSER

name
value

Device Model

Time Integration
Nonlinear Solver
Transient Nonlinear Solver
HB Nonlinear Solver
Continuation/Bifurcation Tracking
Linear Solver

HB Linear Solver

AC Linear Solver

Output

Restart

Sampling analysis and non-intrusive Polynomial
Chaos (PCE)

EmbeddedSampling and non-intrusive Polynomial
Chaos (PCE)

Fully intrusive Polynomial Chaos (PCE)
Direct and Adjoint sensitivities
Harmonic Balance (HB)

Distribution

Measure

Parsing

The name of the parameter and the value it will be assigned.

93

Comments Exceptions to this format are the OUTPUT and RESTART options, which use their
own format. They are defined under their respective descriptions.

The designator pkg refers loosely to a module in the code. Thus, the term is used here
as identifying a specific module to be controlled via options set in the netlist input file.

2.1.25.1. .OPTIONS DEVICE (Device Package Options)

The device package parameters listed in Table outline the options available for specifying device
specific parameters. Some of these (DEFAS, DEFAD, TNOM etc.) have the same meaning as they do for
the . OPTION line from Berkeley SPICE (3f5). Parameters which apply globally to all device models will
be specified here. Parameters specific to a particular device instance or model are specified in section [2.3]

Table 2-3. Options for Device Package

Option Description Default
DEFAD MOS Drain Diffusion Area 0.0
DEFAS MOS Source Diffusion Area 0.0
DEFL MOS Default Channel Length 1.0E-4
DEFW MOS Default Channel Width 1.0E-4

This option controls the behavior of the Digital Latch
(DLTCH), D Flip-Flop (DFF), JK Flip-Flop (JKFF) and T

DIGINITSTATE Flip-Flop (TFF) behavioral digital devices during the DC 3
Operating Point (DCOP) calculations. See [2.3.28]for more
details.

GMIN Minimum Conductance 1.0E-12

This is a minimum resistance to be used in place of the default

zero value of semiconductor device internal resistances. It is
MINRES only used when model specifications (. MODEL cards) leave 0.0

the parameter at its default value of zero, and is not used if the

model explicitly sets the resistance to zero.

This is a minimum capacitance to be used in place of the
default zero value of semiconductor device internal
capacitances. It is only used when model specifications

MINCAP (.MODEL cards) leave the parameter at its default value of 0.0
zero, and is not used if the model explicitly sets the
capacitance to zero.
TEMP Temperature 27.0°C
P (300.15K)
. 27.0°C
TNOM Nominal Temperature (300.15K)
NUMJAC Numerical Jacobian flag (only use for small problems) 0 (FALSE)
VOLTLIM Voltage limiting 1 (TRUE)

94

Table 2-3. Options for Device Package

Option Description Default
BSIMSOI3 Voltage limiting. This flag is similar to VOLTLIM,
except that it only applies to the BSIMSOI version 3 (the
B3SOIVOLTLIM newer versions of .the BSIM SOI do not ha.we voltage limiting). | (TRUE)
Turning this off will often improve numerical robustness.
Unlike VOLTLIM, turning this off does not disable the initial
condition code in the BSIMSOI model.
This is a multiplicative factor which is applied to right-hand
icFac side vector loads of .IC initial conditions during the DCOP 10000.0
phase.
This flag determines if the Lambert-W function should be
applied in place of exponentials in hard-to-solve devices. This
capability is implemented in the diode and BJT. Try this for
LAMBERTW BIT circuits that have convergence problems. For best effect, 0 (FALSE)
this option should be tried with voltlim turned off. A detailed
explanation of the Lambert-W function, and its application to
device modeling can be found in reference [8].
MAXTIMESTEP Maximum time step size 1.0E+99
This flag enables smooth transitions by adding a RC network
SMOOTHBSRC to the output of ABM devices 0
This option controls the smoothness of the transitions if the
RCCONST SMOOTHBSRC flag is enabled. This is done by specifying the 1e-9
RC constant of the RC network
MOSFET Homtopy parameters
VDSSCALEMIN Scaling factor for Vds 0.3
VGSTCONST Initial value for Vgst 4.5 Volt
LENGTHO Initial value for length 5.0e-6
WIDTHO Initial value for width 200.0e-6
TOXO0 Initial value for oxide thickness 6.0e-8
Debug output parameters
DEBUGLEVEL The higher this number, the more info is output 1
DEBUGMINTIMESTE! First time-step debug information is output 0
DEBUGMAXTIMESTE! Last time-step of debug output 65536
Same as DEBUGMINTIMESTEP except controlled by time
DEBUGMINTIME . 0.0
(sec.) instead of step number
R RS TE Same as DEBUGMAXTIMESTEP except controlled by time 100.0

(sec.) instead of step number

95

2.1.25.2. .OPTIONS TIMEINT (Time Integration Options)

The time integration parameters listed in Table 2-4] give the available options for helping control the time
integration algorithms for transient analysis.

Time integration options are set using the . OPTIONS TIMEINT command.

Table 2-4. Options for Time Integration Package.

Option Description Default
Time integration method. This parameter is only relevant when
running Xyce in transient mode. Supported methods: trap or 7
. . (variable
METHOD * trap or 7 (variable order Trapezoid) order
 gear or 8 (Gear method) Trapezoid)
RELTOL Relative error tolerance 1.0E-03
ABSTOL Absolute error tolerance 1.0E-06

This parameter is a scalar which determines how small the

initial time step out of a breakpoint should be. In the current
RESTARTSTEPSCALE version of the time integrator, the first step after a breakpoint 0.005

isn’t subjected to much error analysis, so for very stiff circuits,

this step can be problematic.

This flag sets if “soft” failures of the nonlinear solver, when the
convergence criteria are almost, but not quite, met, should
result in a "success" code being returned from the nonlinear
solver to the time integrator. If this is enabled, it is expected
that the error analysis performed by the time integrator will be
the sole determination of whether or not the time step is
considered a “pass” or a “fail”. This is on by default, but
occasionally circuits need tighter convergence criteria.

NLNEARCONV 0 (FALSE)

This flag is another “soft” nonlinear solver failure flag. In this
case, if the flag is set, time steps in which the nonlinear solver
stalls, and is using updates that are numerically tiny, can be
considered to have converged by the nonlinear solver. If this
flag is set, the time integrator is responsible for determining if
a step should be accepted or not.

NLSMALLUPDATE 1 (TRUE)

The nonlinear solver resets its settings for the transient part of

the run to something more efficient (basically a simpler set of
RESETTRANNLS options with smaller numbers for things like max Newton 1 (TRUE)

step). If this is set to false, this resetting is turned off. Normally

should be left as default.

This parameter determines the maximum order of integration

that time integrators will attempt. Setting this option does not 2 for variable

guarantee that the integrator will integrate at this order, it just order
MAXORD

sets the maximum order the integrator will attempt. In order to ~ Trapezoid

guarantee a particular order is used, see the option MINORD and Gear

below.

96

Table 2-4. Options for Time Integration Package.
Option Description Default

This parameter determines the minimum order of integration

that time integrators will attempt to maintain. The integrator

will start at Backward Euler and move up in order as quickly as
MINORD possible to achive MINORD and then it will keep the order 1

above this. If MINORD is set at 2 and MAXORD is set at 2, then

the integrator will move to second order as quickly as possible

and stay there.

This parameter determines the reference value for relative
convergence criterion in the local truncation error based time
step control. The supported choices

¢ 0. The reference value is the current value on each node.

* 1. The reference value is the maximum of all the signals
NEWLTE at the current time. 1

* 2. The reference value is the maximum of all the signals
over all past time.

¢ 3. The reference value is the maximum value on each
signal over all past time.

This flag sets a new time stepping method after a break point.
Previously, Xyce treats each breakpoint identically to the
DCORP point, in which the intitial time step out of the DCOP is
made to be very very small, because the LTE calculation is
unreliable. As a result, Xyce takes an incredibly small step out
of each breakpoint and then tries to grow the stepsize from
there. When NEWBPSTEPP ING is set, Xyce can take a
reasonable large step out of every non-DCOP breakpoint, and
then just relies on the step control to ensure that the step is
small enough.

Note that the new time stepping method after a break point
does not work well with the old LTE calculation since the old
LTE calculation is conservative and it tends to reject the first
time step out of a break point. We recommend to use newlte if
you choose to use the new time stepping method out of a break
point.

NEWBPSTEPPING 1 (TRUE)

This parameter masks out current variables in the local

MASKIVARS . .
truncation error (LTE) based time step control.

0 (FALSE)

97

Table 2-4. Options for Time Integration Package.
Option Description

This parameter determines if Local Truncation Error (LTE)
control is turned on or not. If ERROPTION is on, then step-size
selection is based on the number of Newton iterations
nonlinear solve. For Trapezoid and Gear, if the number of
nonlinear iterations is below NLMIN then the step is doubled.
If the number of nonlinear iterations is above NLMAX then the
step is cut by one eighth. In between, the step-size is left alone.
Because this option can lead to very large time-steps, it is very
important to specify an appropriate DELMAX option. If the
circuit has breakpoints, then the option MINTIMESTEP SBP
can also help to adjust the maximum time-step by specifying
the minimum number of time points between breakpoints.

ERROPTION

Default

0 (Local
Truncation
Error is used)

This parameter determines the lower bound for the desired
NLMIN number of nonlinear iterations during a Trapezoid time or Gear
integration solve with ERROPTION=I.

This parameter determines the upper bound for the desired
NLMAX number of nonlinear iterations during a Trapezoid time or Gear
integration solve with ERROPTION=I.

This parameter determines the maximum time step-size used
with ERROPTION=I1. If a maximum time-step is also specified
on the . TRAN line, then the minimum of that value and
DELMAX is used.

DELMAX

1e99

This parameter determines the minimum number of time-steps
to use between breakpoints. This enforces a maximum

MINTIMESTEPSBP time-step between breakpoints equal to the distance between
the last breakpoint and the next breakpoint divided by
MINTIMESTEPSBP.

10

This parameter determines whether time-steps are rejected
based upon the step-size selection strategy in ERROPTION=1.
If it is set to O, then a step will be accepted with successful
nonlinear solves independent of whether the number of
TIMESTEPSREVERSAInonlinear iterations is between NLMIN and NLMAX. If it is set
to 1, then when the number of nonlinear iterations is above
NLMAX, the step will be rejected and the step-size cut by one
eighth and retried. If ERROPTION=0 (use LTE) then
TIMESTEPSREVERSAL=I (reject steps) is set.

0 (do not
reject steps)

98

Table 2-4. Options for Time Integration Package.

Option Description Default
Default
value, for
TCAD

TCAD devices by default will solve an extra "setup” problem circuits, is a

to mitigate some of the convergence problems that TCAD combination:
devices often exhibit. This extra setup problem solves a nl_poisson,
nonlinear Poisson equation first to establish an initial guess for drift_diffusion.
the full drift-diffusion(DD) problem. The name of this Default
parameter refers to the fact that the code is solving two DC value, for

DOUBLEDCOPSTEP . . .

operating point steps instead of one. To solve only the non-TCAD
nonlinear Poisson problem, then set circuits is a
DOUBLEDCOP=nl_poisson. To solve only the moot point.
drift-diffusion problem (skipping the nonlinear Poisson), set If no TCAD
DOUBLEDCOP=drift_diffusion. To explicitly set the devices are
default behavior, then set DOUBLEDCOP=nl_poisson, present in the
drift_diffusion. circuit, then
there will not
be an extra
DCOP solve.

This parameter specifies a comma-separated list of timepoints
that should be used as breakpoints. They do not replace the
existing breakpoints already being set internally by Xyce, but
instead will add to them.

Flag for turning on/off breakpoints (1 = ON, 0 = OFF). It is
BPENABLE unlikely anyone would ever set this to FALSE, except to help 1 (TRUE)
debug the breakpoint capability.

BREAKPOINTS N/A

If this is set to nonzero, the code will check the simulation time

at the end of each step. If the total time exceeds the exittime,

the code will ungracefully exit. This is a debugging option, the
EXITTIME . c =

point of which is the have the code stop at a certain time during

a run without affecting the step size control. If not set by the

user, it isn’t activated.

Same as EXITTIME, only applied to step number. The code
EXITSTEP will exit at the specified step. If not set by the user, it isn’t -
activated.

2.1.25.3. .OPTIONS NONLIN (Nonlinear Solver Options)

The nonlinear solver parameters listed in Table [2-5|provide methods for controlling the nonlinear solver for
DC, transient and harmonic balance. Note that the nonlinear solver options for DCOP, transient and
harmonic balance are specified in separate options statements, using . OPTIONS NONLIN, .OPTIONS
NONLIN-TRAN and .OPTIONS NONLIN-HB, respectively. The defaults for . OPTIONS NONLIN and
.OPTIONS NONLIN-TRAN are specified in the third and fourth columns of Table[2-5] The defaults for
.OPTIONS NONLIN-HB are the same as the default settings given for NONLIN-TRAN with two
exceptions. For NONLIN-HB, the default for ABSTOL is 1e-9 and the default for RHSTOL is le-4.

99

Option

Table 2-5. Options for Nonlinear Solver Package.

Description

NONLIN
Default

NONLIN-
TRAN
Default

NOX Use NOX nonlinear solver. 1 (TRUE) 0 (FALSE)
Nonlinear solution strategy. Supported Strategies:
* 0 (Newton)
NLSTRATEGY « 1 (Gradient) 0 (Newton) 0 (Newton)
e 2 (Trust Region)
Line-search method used by the nonlinear solver. Supported
line-search methods:
¢ (O (Full Newton - no line search)
* 1 (Interval Halving) 0 (Full New- 0 (Full
SEARCHMETHOD
* 2 (Quadratic Interpolation) ton) Newton)
* 3 (Cubic Interpolation)
e 4 (More’-Thuente)
Enables the use of Homotopy/Continuation algorithms for the
nonlinear solve. Options are:
* 0 (Standard nonlinear solve)
. . 0 (Standard O (Standard
CONTINUATION 1 (Natural parameter homotopy. See LOCA options list) nonlinear nonlinear
* 2/mos (Specialized dual parameter homotopy for solve) solve)
MOSFET circuits)
* 3/gmin (GMIN stepping, similar to that of SPICE)
ABSTOL Absolute residual vector tolerance 1.0E-12 1.0E-06
RELTOL Relative residual vector tolerance 1.0E-03 1.0E-02
DELTAXTOL Weighted nonlinear-solution update norm convergence 10 033
tolerance
RHSTOL Residual convergence tolerance (unweighted 2-norm) 1.0E-06 1.0E-02
SMALLUPDATETOL Minimum acceptable norm for weighted nonlinear-solution 1 OE-06 1 OE-06
update
MAXSTEP Maximum number of Newton steps 200 20
MAXSEARCHSTEP Maximum number of line-search steps 2 2
IN_FORCING Inexact Newton-Krylov forcing flag 0 (FALSE) 0 (FALSE)
AZ._TOL Sets the minimum allowed linear solver tolerance. Valid only if 1 OE-12 1.0E-12

IN_FORCING=I.

100

Table 2-5. Options for Nonlinear Solver Package.

NONLIN NONLIN-

Description TRAN

Default Default

If using a line search, this option determines the type of step to
take if the line search fails. Supported strategies:

* ((Take the last computed step size in the line search

RECOVERYSTEPTYPE . 0 0
algorithm)
* 1 (Take a constant step size set by RECOVERYSTEP)
RECOVERYSTEP Value of the recovery step if a constant step length is selected 1.0 1.0
DEBUGLEVEL The higher this number, the more info is output 1 1
DEBUGMINTIMESTE! First time-step debug information is output 0 0
DEBUGMAXTIMESTE! Last time-step of debug output 99999999 99999999
N TS Same as DEBUGMINTIMESTEP except controlled by time 00 00
(sec.) instead of step number
AT Same as DEBUGMAXTIMESTEP except controlled by time 1. 0E+99 1. 0E+99
(sec.) instead of step number
2.1.25.4. .OPTIONS LOCA (Continuation and Bifurcation Tracking Package Options)

The continuation selections listed in Table [2-6| provide methods for controlling continuation and
bifurcation analysis. These override the defaults and any that were set simply in the continuation package.
This option block is only used if the nonlinear solver or transient nonlinear solver enable continuation
through the CONTINUATION flag.

There are two specialized homotopy methods that can be set in the nonlinear solver options line. One is
MOSFET-based homotopy, which is specific to MOSFET circuits. This is specified using
continuation=2 or continuation=mos. The other is GMIN stepping, which is specified using
continuation=3 or continuation=gmin. For either of these methods, while it is possible to
modify their default LOCA options, it is generally not necessary to do so. Note that Xyce automatically
attempts GMIN stepping if the inital attempt to find the DC operating point fails. If GMIN stepping is
specified in the netlist, Xyce will not attempt to find a DC operating point without GMIN stepping.

LOCA options are set using the . OPTIONS LOCA command.

Table 2-6. Options for Continuation and Bifurcation Tracking Package.
Option Description Default
Stepping algorithm to use:

¢ (O (Natural or Zero order continuation
STEPPER () 0 (Natural)

* 1 (Arc-length continuation)

101

Table 2-6. Options for Continuation and Bifurcation Tracking Package.
Option Description Default
Predictor algorithm to use:
* 0 (Tangent)

¢ 1 (Secant)

PREDICTOR 0 (Tangent)
e 2 (Random)
* 3 (Constant)
Algorithm used to adjust the step size between continuation
steps:
STEPCONTROL * 0 (Constant) 0 (Constant)
* 1 (Adaptive)
CONPARAM Parameter in which to step during a continuation run VA:V0O
INITIALVALUE Starting value of the continuation parameter 0.0
MINVALUE Minimum value of the continuation parameter -1.0E20
MAXVALUE Maximum value of the continuation parameter 1.0E20
BIFPARAM Parameter to compute during bifurcation tracking runs VA:V0
MAXSTEPS Maximum number of continuation steps (includes failed steps) 20
Maximum number of nonlinear iterations allowed (set this
MAXNLITERS parameter equal to the MAXSTEP parameter in the NONLIN 20
option block
INITIALSTEPSIZE Starting value of the step size 1.0
MINSTEPSIZE Minimum value of the step size 1.0E20
MAXSTEPSIZE Maximum value of the step size 1.0E-4

Value between 0.0 and 1.0 that determines how aggressive the
AGGRESSIVENESS step size control algorithm should be when increasing the step 0.0
size. 0.0 is a constant step size while 1.0 is the most aggressive.

If set to a nonzero (small) number, this parameter will force the

GMIN stepping algorithm to stop and declare victory once the

artificial resistors have a conductance that is smaller than this
RESIDUALCONDUCTAMNmEber. This should only be used in transient simulations, and 0.0

ONLY if it is absolutely necessary to get past the DC operating

point calculation. It is almost always better to fix the circuit so

that residual conductance is not necessary.

2.1.25.5. .OPTIONS LINSOL (Linear Solver Options)

Xyce uses both sparse direct solvers as well as Krylov iterative methods for the solution of the linear
equations generated by Newton’s method. For the advanced users, there are a variety of options that can be
set to help improve these solvers. Transformations of the linear system have a “TR_" prefix on the flag.
Many of the options for the Krylov solvers are simply passed through to the underlying Trilinos/AztecOO

102

solution settings and thus have an “AZ_" prefix on the flag.

Linear solver options are set using the . OPTIONS LINSOL command.

Table 2-7. Options for Linear Solver Package.

Option Description Default
Determines which linear solver will be used.
* KLU
» KSparse
KLU (Serial,
* SuperLU (optional) Parallel
* AztecOO <104
unknowns)
type * Belos AztecOO,
¢ ShyLU (optional) (Parallel,
>10*
Note that while KLU, KSparse, and SuperLU (optional) are unknowns)
available for parallel execution they will solve the linear
system in serial. Therefore they will be useful for moderate
problem sizes but will not scale in memory or performance for
large problems
Determines which preconditioner will be used with an iterative
linear solver
Ifpack (If-

prec_type * Ifpack pack_IlukGraph)

A preconditioner will not be used if a direct solver (KLU,
KSparse, SuperLU) is specified.

nél"riggers use of native AztecOO preconditioners for the

use_aztec_preco iterative linear solves 0 (FALSE)
. Use Ifpack factory to create preconditioner instead of using
use_ifpack_facto }iypack_lluk Graph 0 (FALSE)
If using the Ifpack factory, use_ifpack_factory=1,
which preconditioner is created
* Amesos (Additive Schwarz w/ KLU subdomain solve)
ifpack_type Amesos
« ILU
« ILUT
Relative dropping threshold for Schur complement
ShyLU_rthresh preconditioner (ShyLU only) 1.0E-03
Transformation parameters
0 (NONE,
D s . Serial)
TR_partition Perform load-balance partitioning on the linear system 1 (Isorropia
Parallel)
TR_partition_typdype of load-balance partitioning on the linear system HYPERGRAPH

103

Table 2-7. Options for Linear Solver Package.

Option Description Default
0 (FALSE,
TR_singleton_filtRriggers use of singleton filter for linear system Serial) 1
Parallel)
0 (FALSE,
TR amd Triggers use of approximate minimum-degree (AMD) ordering Serial)
- for linear system 1 (TRUE,
Parallel)
TR_global btf Triggers use .of block triangular form (BTF) .ordlerlng for linear 0 (FALSE)
system, requires TR_amd=0 and TR_partition=0
TR_reindex Reindexes linear systen'l pa?allel global indices in lexigraphical | (TRUE)
order, recommended with singleton filter
Triggers remapping of column indices for parallel runs,
TR_solvermap recommended with singleton filter 1 (TRUE)
Iterative linear solver parameters
adapt ive_solve Trlggers. use .of Azt.ecOC.) ada}ptlve solve algorithm for 0 (FALSE)
preconditioning of iterative linear solves
A7 max_iter Maximum number of iterative solver iterations 200

AZ_precond

AztecOQO iterative solver preconditioner flag (used only when
use_aztec_precond=l)

AZ_dom_decomp
(14)

. AZ_gmres
AZ_solver Iterative solver type (1)
AZ_ conv Convergence type AZ_r0 (0)

AZ_pre_calc

Type of precalculation

AZ_recalc
(1)

AZ_keep_info

Retain calculation info

AZ_true
(1)

AZ _modified

AZ_orthog Type of orthogonalization (1)

. AZ_ilut
AZ_subdomain_solubdomain solution for domain decomposition preconditioners (9)
AZ_ilut_fill Approximate allowed fill-in factor for the ILUT preconditioner 2.0
AZ_drop Speciﬁgs firop tolerance used in conjunction with LU or ILUT 1 OE-03

preconditioners
AZ_reorder Reordering type Z_(\(Z))_none
AZ_scaling Type of scaling ‘?(Z))_none
AZ_kspace Maximum size of Krylov subspace 50
AZ_tol Convergence tolerance 1.0E-9
AZ_output Output level AZ_none (0)

104

Table 2-7. Options for Linear Solver Package.

Option Description Default
50 (if
verbose
build)
AZ_diagnostics Diagnostic information level AZ_none (0)
AZ_overlap Schwarz overlap level for ILU preconditioners 0
AZ_rthresh Diagonal shifting relative threshold for ILU preconditioners 1.0001
AZ_athresh Diagonal shifting absolute threshold for ILU preconditioners 1.0E-04

Write out linear system matrix and right-hand-side vector,

output_1s . .
put— post-transformation, to Matrix Market file every # solves

0 (no output)

Write out linear system matrix and right-hand-side vector,

output_base_1s . .
put— - pre-transformation, to Matrix Market file every # solves

0 (no output)

Write out linear system matrix and right-hand-side vector to
output_failed_1s Matrix Market file every # solves when linear solver fails (only 0 (no output)
available for direct solvers)

2.1.25.6. .OPTIONS LINSOL-HB (Linear Solver Options)

For harmonic balance (HB) analysis, Xyce provides both iterative and direct methods for the solution of the
steady state. Only matrix-free techniques are available for preconditioning the HB Jacobian with an
iterative linear solver. The direct linear solver explicitly forms the HB Jacobian and solves the
complex-valued linear system with the requested solver. For HB analysis, a reduced number of linear
solver options are available, and are set using the . OPTIONS LINSOL-HB command.

Table 2-8. Options for Linear Solver Package for HB.
Option Description Default

Determines which linear solver will be used

* AztecOO
type e Belos AztecOO

¢ Direct

Determines which preconditioner will be used with an iterative
linear solver

prec_type * block_jacobi block_jacobi

A preconditioner will not be used if t ype=Direct is
specified

, , Enable one-step correction to the block_jacobi
block_jacobi_correcte P — *

preconditioner. 0 (FALSE)

105

Table 2-8. Options for Linear Solver Package for HB.
Option Description Default

Determines which direct linear solver will be used if
type=Direct is specified

direct_solver LAPACK
e LAPACK

AZ_kspace Maximum size of Krylov subspace 50

A7Z_max_iter Maximum number of iterative solver iterations 200

AZ tol Convergence tolerance 1.0E-9

Write out linear system matrix and right-hand-side vector to

1 .
output_ls Matrix Market file every # solves

0 (no output)

2.1.25.7. .OPTIONS LINSOL-AC (Linear Solver Options)

For AC analysis, Xyce provides both iterative and direct methods for the solution of the linear equations.
For the advanced users, there are a variety of options that can be set to help improve these solvers.
Transformations of the linear system have a “TR_" prefix on the flag. Many of the options for the Krylov
solvers are simply passed through to the underlying Trilinos/AztecOO solution settings and thus have an
“AZ_" prefix on the flag.

Linear solver options are set using the . OPTIONS LINSOL-AC command. The available options are the
same as those for .OPTIONS LINSOL.

2.1.25.8. .OPTIONS OUTPUT (Output Options)

The .OPTIONS OUTPUT command can be used to allow control of the output frequency of data to files
specified by . PRINT TRAN commands.
One method is to specify output intervals. The format for this method is:

.OPTIONS OUTPUT INITIAL_INTERVAL=<interval> [<t0> <i0> [<tl> <il>]x]

where INITIAL_INTERVAL=<interval> specifies the starting interval time for output and

<tx> <ix> specifies later simulation times <t x> where the output interval will change to <ix>. The
solution is output at the exact intervals requested; this is done by interpolating the solution to the requested
time points.

Another useful method for controlling the output frequency is to specify discrete output points.
.OPTIONS OUTPUT OUTPUTTIMEPOINTS=<t0>,<tl>, *

If this option is used, then only the specified time points will appear in the output file. No other points will
be output, so files using this method can be very sparse. For this type of output, the output values are not
interpolated. Instead, the specified output points are set as breakpoints in the time integrator, so the output
values are computed directly.

106

In addition to controlling the frequency of output, it is also possible to use output options to suppress the
header from standard format output files, and the footer from both standard and tecplot format output
files.

.OPTIONS OUTPUT PRINTHEADER=<boolean> PRINTFOOTER=<boolean>

where setting the PRINTHEADER variable to “false” will suppress the header and PRINTFOOTER
variable to “false” will suppress the footer. The PRINTHEADER option is only applicable to . PRINT
<analysis> FORMAT=<STD |GNUPLOT | SPLOT> files. The PRINTFOOTER option is only
applicable to .PRINT <analysis> FORMAT=<STD|GNUPLOT |SPLOT | TECPLOT> files.

It is possible to add a STEPNUM column as the first column in the output file.
.OPTIONS OUTPUT ADD_STEPNUM_COL=<boolean>

where setting the ADD__STEPNUM__COL variable to “true” will add the STEPNUM column. The default is
“false”. This option is applicable to FORMAT=<STD | NOINDEX | GNUPLOT | SPLOT> for any .PRINT
line that supports FORMAT=STD output.

The default Xyce output for phase operators, such as VP (), IP (), SP (), YP () and ZP (), is in degrees.
For compatibility with other simulators like Spice3f5 and ngspice, it is possible to change that operator
output to use radians instead:

.OPTIONS OUTPUT PHASE_OUTPUT_RADIANS=<boolean>

The default value for this option is FALSE. If set to TRUE then the phase output will be in radians instead
of degrees. This option also applies to the format for AC sensitivity output. It does not affect the output
from a . FOUR analysis or a texttt. FOUR measure though. Those two outputs are always in degrees.

2.1.25.9. .OPTIONS RESTART (Checkpointing Options)

The .OPTIONS RESTART command is used to control all checkpoint output and restarting.

The checkpointing form of the . OPTIONS RESTART command takes the following format:

General Format:

.OPTIONS RESTART [PACK=<0|1>] JOB=<job prefix>
+ [INITIAL_INTERVAL=<initial interval time> [<t0> <i0> [<tl> <il>]x
1]

PACK=<0 | 1> indicates whether the restart data will be byte packed or not. Parallel restarts must always
be packed while Windows/MingW runs are always not packed. Otherwise, data will be packed by default
unless explicitly specified. JOB=<job prefix> identifies the prefix for restart files. The actual restart
files will be the job name with the current simulation time appended (e.g. namele-05 for JOB=name
and simulation time 1e-05 seconds). Furthermore, INITIAL_INTERVAL=<initial interval

t ime> identifies the initial interval time used for restart output. The <t x> <ix> intervals identify times
<t x> at which the output interval (ix) should change. This functionality is identical to that described for
the .OPTIONS OUTPUT command.

107

Examples To generate checkpoints at every time step (default):

Example: .OPTIONS RESTART JOB=checkpt

To generate checkpoints every 0.1 us:

Example: .OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.lus
To generate unpacked checkpoints every 0.1 s:

Example: .OPTIONS RESTART PACK=0 JOB=checkpt
INITIAL_INTERVAL=0.1lus

To specify an initial interval of 0.1 ws, at 1 us change to interval of 0.5 us, and at 10 ps change to interval
of 0.1 us:

Example:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.lus 1.0us
+ 0.5us 10us 0.1lus

2.1.25.10. .OPTIONS RESTART (Restarting Options)

To restart from an existing restart file, specify the file by either FILE=<restart file name>to
explicitly use a restart file or by JOB=<job name> START_TIME=<specified name> to specify a
file prefix and a specified time. The time must exactly match an output file time for the simulator to
correctly identify the correct file. To continue generating restart output files,
INITIAL_INTERVAL=<interval> and following intervals can be appended to the command in the
same format as described above. New restart files will be packed according to the previous restart file read
in.

The restarting form of the . OPTIONS RESTART command takes the following format:

General Format:

.OPTIONS RESTART FILE=<restart file name>|JOB=<job name>
START_TIME=<time>
+ [INITIAL_ INTERVAL=<interval> [<t0> <i0> [<tl> <il>]1=*]]

Examples Example restarting from checkpoint file at 0.133 ps:

Example: .OPTIONS RESTART JOB=checkpt START_TIME=0.133us
To restart from checkpoint file at 0.133 us:

Example: .OPTIONS RESTART FILE=checkpt0.000000133

Restarting from 0.133 us and continue checkpointing at 0.1 s intervals:

108

Example:

.OPTIONS RESTART FILE=checkpt0.000000133 JOB=checkpt_again
+ INITIAL_INTERVAL=0.lus

2.1.25.11. .OPTIONS RESTART: special notes for use with two-level-Newton

Large parallel problems which involve power supply parasitics often require a two-level solve, in which
different parts of the problem are handled separately. In most respects, restarting a two-level simulation is
similar to restarting a conventional simulation. However, there are a few differences:

When running with a two-level algorithm, Xyce requires (at least) two different input files. In order
to do a restart of a two-level Xyce simulation, it is necessary to have an . OPTIONS RESTART
statement in each file.

It is necessary for the statements to be consistent. For example, the output times must be exactly the
same, meaning the initial intervals must be exactly the same.

Xyce will not check to make sure that the restart options used in different files match, so it is up to
the user to ensure matching options.

Finally, as each netlist that is part of a two-level solve will have its own . OPTIONS RESTART
statement, that means that each netlist will generate and/or use its own set of restart files. As a result,
the restart file name used by each netlist must be unique.

2.1.25.12. .OPTIONS SAMPLES (Sampling options)

The sampling selections listed in Table [2-9| provide methods for controlling Monte Carlo and Latin
Hypercube Sampling methods.

SAMPLES options are set using the . OPTIONS SAMPLES command. They are only used if the netlist
also includes a . SAMPLING statement.

Table 2-9. Options for Sampling Package.

Option Description Default
NUMSAMPLES Total number of samples 0
SAMPLE_TYPE Sampling type (MC or LHS) MC
Comma separated list of outputs (anything that would be a
OUTPUTS . -
valid . RESULT output command)
Comma separated list of measure names (must refer to
MEASURES . . -
.MEASURE commands in the netlist)
Covariance matrix specified in row major form as
COVMATRIX .. _
comma-separated double precision numbers.
See
SEED Random seed 1
footnote.

Compute and outputs statistics for specified outputs and/or
OUTPUT_SAMPLE_S TAn'lI‘eSaSureS —

109

Table 2-9. Options for Sampling Package.
Option Description Default

Enable regression based PCE. If this is enabled, the randomly
REGRESSION_PCE sampled points will be used to produce a PCE approximation
using regression methodss.

Enable projection based PCE (quadrature). If this is enabled, a
PROJECTION PCE PCE approximation will be created using quadrature methods.
- The NUMSAMPLES parameter will be ignored, and the

samples will be the quadrature points used by projection PCE.

Once the PCE coefficients are obtained, perform sampling on

RESAMPLE . .
the PCE approximation

OUTPUT_PCE_COEFF utput the PCE coefficients -

SPARSE_GRID Use sparse grid methods if using projection PCE. -

STDOUTPUT Send sampling and PCE output to the terminal -

2.1.25.13. .OPTIONS EMBEDDEDSAMPLES (Embedded Sampling options)

The sampling selections listed in Table 2-10] provide methods for controlling Embedded Sampling
methods.

EMBEDDEDSAMPLES options are set using the . OPTIONS EMBEDDEDSAMPLES command. They are
only used if the netlist also includes a . EMBEDDEDSAMPLING statement.

Table 2-10. Options for Embedded Sampling Package.

Option Description Default
NUMSAMPLES Total number of samples 0

SAMPLE_TYPE Sampling type (MC or LHS) MC

OUTPUTS Comma separated list of outputs (anything that would be a 3

valid . PRINT output variable)

Covariance matrix specified in row major form as
COVMATRIX .. -
comma-separated double precision numbers.

See

SEED Random seed 1
footnote.

OUTPUT_SAMPLE_ STAXfinpute and outputs statistics for specified outputs. -

Enable regression based PCE. If this is enabled, the randomly
REGRESSION_PCE sampled points will be used to produce a PCE approximation -
using regression methods.

IThe seed can also be set using command line option, -randseed. The command line seed will override the netlist seed value. If
the seed is not set in either the netlist or on the command line, then Xyce generates a seed internally. In all cases, Xyce will
output text to the console indicating what seed is being used.

110

Table 2-10. Options for Embedded Sampling Package.
Option Description Default

Enable projection based PCE (quadrature). If this is enabled, a
PROJECTION PCE PCE approximation will be created using quadrature methods.
- The NUMSAMPLES parameter will be ignored, and the

samples will be the quadrature points used by projection PCE.

Once the PCE coefficients are obtained, perform sampling on

RESAMPLE . .
the PCE approximation

OUTPUT_PCE_COEFF Qutput the PCE coefficients -

SPARSE_GRID Use sparse grid methods if using projection PCE. -

STDOUTPUT Send sampling and PCE output to the terminal -

2.1.25.14. .opTIONS PCES (Fully intrusive PCE options)

The sampling selections listed in Table 2-1T] provide methods for controlling Embedded Sampling
methods.

PCES options are set using the . OPTIONS PCES command. They are only used if the netlist also
includes a . PCE statement.

Table 2-11. Options for PCE Package.
Option Description Default

Comma separated list of outputs (anything that would be a
OUTPUTS . . —
valid . PRINT output variable)

Covariance matrix specified in row major form as
COVMATRIX .. —
comma-separated double precision numbers.

Sampling type (MC or LHS). This is only used if resampling is

SAMPLE_TYPE enabled. MC
SEED Random seed. This is only used if resampling is enabled. See 1
footnote.

OUTPUT_SAMPLE_ STAXfinpute and outputs statistics for specified outputs. -

Once the PCE coefficients are obtained, perform sampling on

RESAMPLE . .
the PCE approximation

OUTPUT_PCE_COEFF Output the PCE coefficients -

SPARSE_GRID Use sparse grid methods if using projection PCE. -

STDOUTPUT Send sampling and PCE output to the terminal -

I'The seed can also be set using command line option, -randseed. The command line seed will override the netlist seed value. If
the seed is not set in either the netlist or on the command line, then Xyce generates a seed internally. In all cases, Xyce will
output text to the console indicating what seed is being used.

IThe seed can also be set using command line option, -randseed. The command line seed will override the netlist seed value. If
the seed is not set in either the netlist or on the command line, then Xyce generates a seed internally. In all cases, Xyce will
output text to the console indicating what seed is being used.

111

2.1.25.15. .OPTIONS SENSITIVITY (Direct and Adjoint Sensitivity Options)

The sensitivity selections listed in Table [2-12]provide methods for controlling direct and adjoint sensitivity
analysis.

SENSITIVITY options are set using the . OPTIONS SENSITIVITY command. They are only used if the
netlist also includes a . SENS statement.

Table 2-12. Options for Sensitivity Package.

Option Description Default
ADJOINT Flag to enable adjoint sensitivity calculation false

DIRECT Flag to enable direct sensitivity calculation false
OUTPUTSCALED Flag to enable output of scaled sensitivities false
OUTPUTUNSCALED Flag to enable output of unscaled sensitivities true
STDOUTPUT Flag to enable output of sensitivies to std output false

Start time for set of time steps over which to compute transient
ADJOINTBEGINTIME . . 0.0

adjoints.

End time for set of time steps over which to compute transient
ADJOINTFINALTIME adjoints 1.0e+99

List of comma-separated time points at which to compute
ADJOINTTIMEPOINTS . . . —
transient adjoints.

2.1.25.16. .OPTIONS HBINT (Harmonic Balance Options)

The Harmonic Balance parameters listed in Table [2-13] give the available options for helping control the
algorithm for harmonic balance analysis.

Harmonic Balance options are set using the . OPTIONS HBINT command.

Table 2-13. Options for HB.

Option Description Default
Number of harmonics to be calculated for each tone. It must 10
NUMFREQ have the same number of entries as .HB statement
STARTUPPERIODS Number of periods to integrate through before calculating the 0
initial conditions. This option is only used when TAHB=1.
SAVEICDATA Write out the initial conditions to a file. 0

This flag sets transient assisted HB. When TAHB=0, transient
analysis is not performed to get an initial guess. When
TAHB=1, it uses transient analysis to get an initial guess. For
multi-tone HB simulation, the initial guess is generated by a

TAHB single tone transient simulation. The first tone following . HB 1
is used to determine the period for the transient simulation. For
multi-tone HB simulation, it should be set to the frequency that
produces the most nonlinear response by the circuit. When
tahb = 2, the DC op is used as an initial guess

112

Table 2-13. Options for HB.
Option Description Default

This flag sets voltage limiting for HB. During the initial guess

calculation, which normally uses transient simulation, the
VOLTLIM voltage limiting flag is determined by .options device voltlim. 1

During the HB phase, the voltage limiting flag is determined

by .options hbint voltlim.

the largest
The maximum intermodulation product order used in the value in the
spectrum. NUMFREQ
list.

The total
number of
frequencies
(positive,
negative and
DC).

INTMODMAX

NUMTPTS Number of time points in the output

2.1.25.17. .OPTIONS DIST (Parallel Distribution Options)

The parameters listed in Table [2-14] give the available options for controlling the parallel distribution used
in Xyce. There are three choices for distribution strategy.

The default distribution strategy is “first-come, first-served” (STRATEGY=0), which divides the devices
found in the netlist into equal sized groups (in the order they are parsed) and distributes a group to each
processor. This does not take into account the connectivity of the circuit or balance device model
computation, and therefore can exhibit parallel imbalance for post-layout circuits that have a substantial
portion of parasitic devices.

The “flat round-robin” strategy (STRATEGY=1) will generate the same distribution as the default strategy,
but every parallel processor will participate in reading its portion of the netlist. This strategy provides a
more scalable setup than the default strategy, but can only be applied to flattened (non-hierarchical)
netlists.

The “device balanced” strategy (STRATEGY=2) will evenly divide each of the device types over the
number of parallel processors, so each processor will have a balanced number of each model type. This
allieviates the parallel imbalance in the device model computation that can be experienced with post-layout
circuits. However, it does not take into account the circuit connectivity, so the communication will not be
minimized by this strategy.

113

Table 2-14. Options for Parallel Distribution.
Option Description Default
Parallel device distribution strategy
¢ 0 (First-Come, First-Served)
STRATEGY « 1 (Flat Round-Robin) 0
e 2 (Device Balanced)

2.1.25.18. .OPTIONS FFT (FFT Options)

The parameters listed in Table [2-15| give the available options for controlling all of the . FFT statements in
a given Xyce netlist.

If FFT_ACCURATE is set to 1 (true), which is the default, then Xyce will insert breakpoints at the sample
times requested by the collection of . FFT lines in the netlist. This has been found to improve the accuracy
of the . FF'T analyses, at the possible expense of simulation speed. If FFT_ACCURATE is set to O (false),
then interpolation is used to determine the output variable values at the specified sample times. If the
—-remeasure command line option is used to recalculate the . MEASURE FFT and/or .FFT statements
for a . TRAN analysis, then FFT_ACCURATE is set to 0 during the re-measure operation. Finally, if
.OPTIONS OUTPUT INITIAL_INTERVAL is used in the netlist then .OPTIONS FFT
FFT_ACCURATE will also be set to 0.

If FFTOUT is set to 1 then additional metrics are output to both stdout and the <netlistName>.fft0
file for each .FFT line. In addition a sorted list of the 30 largest harmonics is output to stdout. Those
additional metrics are as follows, where Section [2.1.8.3] provides detailed definitions for these metrics:

e Effective Number of Bits (ENOB)

* Spurious Free Dynamic Range (SFDR)
 Signal to Noise Ratio (SNR)

* Signal to Noise-and-Distortion Ratio (SNDR)

¢ Total Harmonic Distorion (THD)

The setting for FFT_MODE is used to control whether the Xyce FFT processing and output are more
compatible with HSPICE (0) or Spectre (1). This setting affects the format of the window functions, the
conversion from two-sided to one-sided results, and whether the default output for the magnitude values is
normalized, or not. Section [2.1.8.1 gives more details.

Table 2-15. Options for FFT.
Option Description Default

Insert breakpoints at the sample times requested by the

FFT_ACCURATE collection of .FFT lines in the netlist 1 (true)

114

Table 2-15. Options for FFT.

Option Description Default
Output additional metrics (ENOB, SFDR, SNR, SNDR and

FFTOUT THD) and a sorted list of the 30 largest harmonics for each 0 (false)
.FFT line

Controls whether the FFT calculations and output format are

FFT_MODE more compatible with HSPICE (0) or Spectre (1)

2.1.25.19. .OPTIONS MEASURE (Measure Options)

The parameters listed in Table [2-16] give the available options for controlling all of the . MEASURE
statements in a given Xyce netlist. The MEASDGT, MEASFAIL and MEASOUT options are included for
HSPICE compatibility.

If given in the netlist, the setting for MEASOUT controls whether the . mt # (or .ms# or .ma#) files are
made (1) or not (0). The MEASOUT setting takes precedence over the MEASPRINT setting (which is a
Xyce-specific option) if both are given in the netlist. See Section[2.1.18.7)for more details then on how the
MEASPRINT option interacts with the individual . MEASURE statements and the ~remeasure command
line option.

If given in the netlist, the setting for the MEASDGT overrides the PRECISION qualifiers given on
individual .MEASURE lines. The default value for the MEASDGT option is different from in HSPICE.

The Xyce behavior for failed measures can be controlled via the MEASFATIL and DEFAULT_VAL options,
as well as with the DEFAULT_VAL qualifiers on individual . MEASURE lines. The order of precedence
(from high-to-low) is the MEASFATIL option, the DEFAULT_VAL option, and the DEFAULT_VAL
qualifier on individual .MEASURE lines. If the MEASFATIL option is given and set equal to 0 then Xyce
outputs “0” in the .mt# (or .ms# or .ma#) files for a failed measure. If the MEASFATIL option is given
and set equal to 1 (or any other non-zero value) then Xyce outputs “FAILED” in the .mt # (or .ms# or
.ma#) files for a failed measure. If given in the netlist, the setting for the DEFAULT_VAL option overrides
the DEFAULT_VAL qualifiers given on individual . MEASURE lines. The DEFAULT_VAL option and the
DEFAULT_VAL qualifiers can be set to any real number. For all of these cases, Xyce will print “FAILED”
to the standard output for a failed measure. As a final note, the FOUR measure is a special case since it
produces multiline output. Failed FOUR measures will be reported as “FAILED” in the .mt# (or .ms# or
.ma#) files, irrespective of the various MEASFAIL and DEFAULT_VAL settings.

The USE_CONT_FILES option controls whether each AC_CONT, DC_CONT, NOISE_CONT or
TRAN_CONT mode measure uses a separate output file for its results, or not. Section [2.1.19.1|provides
more details and an example netlist for this options setting.

Table 2-16. Options for MEASURE.
Option Description Default

Default value for “failed measures” in the .mt# (or .ms# or

DEFAULT_VAL .ma#) files. -1

Precision for all MEASURE statements. This value applies to
MEASDGT the output to both the .mt# (or .ms# or .ma#) files and the 6
standard output.

115

Table 2-16. Options for MEASURE.

Option Description Default
MEASFAIL Specify output format for failed measures 1
MEASOUT Control whether the .mt0 file is made or not 1

Measure Output

* ALL (Output measure information to both file(s) and

stdout)
MEASPRINT ALL
* STDOUT (Output measure information to stdout only)

* NONE (Suppress all measure output)

Specifies whether “continuous” mode measures use separate

USE_CONI_FILES output files for each such measure 1 (TRUE)
2.1.25.20. .OPTIONS PARSER (Parser Options)
The parameter listed in Table [2-17 gives the available option for netlist parsing.
Table 2-17. Options for Parsing.
Option Description Default
MODEL_BINNING Enable model binning during netlist parsing. See Section TRUE

2.1.21]for more details on how model binning works in Xyce.

116

2.1.26. . PARAM (Parameter)

User defined parameter that can be used in expressions throughout the netlist.

General Form

.PARAM [<name>=<value>]*

Examples

.PARAM A_Param=1K
.PARAM B Param={A_ Paramx3.1415926535}

Arguments and

Options name
value
The name of a parameter and its value. The value may be an expression.
Comments Parameters defined using . PARAM only have a few restrictions on their usage. In

earlier versions of Xyce they were handled as constants that were evaluated during
parsing. This is no longer the case, and parameters can now have their values change
throughout the calculation. A . PARAM defined in the top level netlist is equivalent to
a .GLOBAL_PARAM, and they can be combined as needed. Thus, you may use
parameters defined by . PARAM in expressions used to define global parameters, and
you may also use global parameters in . PARAM definitions.

It is legal for parameters to depend on special variabls such as TIME, FREQ, TEMP
and VT variables. However, it is not legal for parameters to depend on solution
variables such as voltage nodes or independent source currents.

Parameters defined using . PARAM can be modified directly by various analyses, such
as .DC, . STEP, . SAMPLING and . EMBEDDEDSAMPLING, subject to scoping rules.

To load an external data file with time voltage pairs of data on each line into a global
parameter, use this syntax:

.GLOBAI_PARAM extdata = {tablefile("filename")}

or

.GLOBAL_ PARAM extdata {table ("filename") }

where £ilename would be the name of the file to load. Other interpolators that can
read in a data table from a file include fasttable,spline, akima, cubic,
wodicka and b1li. See[2.2]for further information.

There are several reserved words that may not be used as names for parameters. These
reserved words are:

e Time
e F'reqg
* Hertz

e Vt

117

e Temp
e Temper
e GMIN
The scoping rules for parameters are:

e If a .PARAM, statement is included in the main circuit netlist, then it is
accessible from the main circuit and all subcircuits.

* .PARAM statements defined within a subcircuit are scoped to that subciruit
definition. So, their parameters are only accessible within that subcircuit
definition, as well as within “nested subcircuits” also defined within that
subcircuit definition.

* Parameters defined via . PARAM statements can be modified by the various UQ
analysis techniques (. STEP, . SAMPLING, etc) but this only works for
.PARAM that have been defined in the top level netlist. Parameters defined
inside of subcircuits cannot be modified directly by these analyes, but they can
be modified indirectly via dependence on other globally scoped parameter.

Additional illustative examples of scoping are given in the “Working with Subcircuits
and Models” section of the Xyce Users’ Guide [1]] .

118

2.1.27. . PCE (Fully Intrusive Polynomial Chaos Expansion (PCE) Analysis)

Calculates a fully intrusive Polynommial Chaos Expansion (PCE) analysis (for .DC or . TRAN only) to
propagate uncertainty from a set of uncertain inputs to uncertain outputs. This involves evaluating the
circuit at a set of parameter values corresponding to quadrature points used by the PCE algorithm. The loop
over parameter values happens at the inner-most part of the calculation, so all samples are propagated
simultaneously.

This fully-intrusive form of PCE is an experimental analysis method. Non-intrusive methods of PCE are
also available in Xyce and will usually be a better choice. The non-intrusive methods are used in
combination with . SAMPLING and/or . EMBEDDEDSAMPLING. Of those other methods, the behavior of
. PCE most closely resembles that of . EMBEDDEDSAMPLING with projection_pce=true.

General Form .PCE
+ param=<parameter name>, [parameter name]x
+ type=<parameter type>, [parameter type]*
+ means=<mean>, [mean] *
+ std_deviations=<standard deviation>, [standard
deviation] *
+ lower_bounds=<lower bound>, [lower bound] *
+ upper_bounds=<upper bound>, [upper bound] *
+ alpha=<alpha>, [alpha]*
+ beta=<beta>, [betal *

Examples .PCE

param=R1
type=normal
means=3K
std_deviations=1K

+ o+ + +

.PCE

param=R1, R2
type=uniform,uniform
lower_bounds=1K, 2K
upper_bounds=5K, 6K

.PCE useExpr=true

.options PCES
+ OUTPUTS={R1:R}, {V (1)}

Arguments and

Options param
Names of the parameters to be sampled. This may be any of the parameters
that are valid for . STEP, including device instance, device model, or global
parameters. If more than one parameter, then specify as a comma-separated
list.

119

type
Distribution type for each parameter. This may be uniform, normal or
gamma. If more than one parameter, then specify as a comma-separated list.

means
If using normal distributions, the mean for each parameter must be specified.
If more than one parameter, then specify as a comma-separated list.

std_deviations
If using normal distributions, the standard deviation for each parameter must
be specified. If more than one parameter, then specify as a comma-separated
list.

lower bounds
If using uniform distributions, the lower bound must be specified. This is
optional for normal distributions. If used with normal distributions, may
alter the mean and standard deviation. If more than one parameter, then
specify as a comma-separated list.

upper_bounds
If using uniform distributions, the upper bound must be specified. This is
optional for normal distributions. If used with normal distributions, may
alter the mean and standard deviation. If more than one parameter, then
specify as a comma-separated list.

alpha
If using gamma distributions, the alpha value for each parameter must be
specified. If more than one parameter, then specify as a comma-separated
list.

beta
If using gamma distributions, the beta value for each parameter must be
specified. If more than one parameter, then specify as a comma-separated
list.

usekExpr
If this argument is set to true, then the sampling algorithm will set up
random inputs from expression operators such as AGAUSS and AUNIF. In
this case it will also ignore the list of parameters on the . PCE command
line. For a complete description of expression-based random operators, see
the expression documentation in section[2.2]

Comments In addition to the . PCE command, this analysis requires a .options PCES
command as well. The . PCE command specifies parameters and their attributes,
either using the useExpr option, or with comma-separated lists. The
.options PCES command specifies the outputs for which to compute statistics. To
see the details of the .options PCES command , see table

On the .PCE command line, if not using useExpr, parameters and their attributes

must be specified using comma-separated lists. The comma-separated lists must all be
the same length.

120

The .PRINT PCE command provides output based on the contents of those
print-lines, and also the OUTPUT arguments on the . OPTIONS PCES line.

If the OUTPUT_SAMPLE_STATS argument on a .PRINT PCE line is set to “true”
then the statistics for the MEAN, MEANPLUS, MEANMINUS, STDDEV and VARIANCE
will be output for each variable in the OUTPUT argument. If the
OUTPUT_ALL_SAMPLES argumenton a .PRINT PCE line is set to “true” then the
values of all quadrature points, for each variable requested in the OUTPUTS argument,
will be output.

121

2.1.28. . PREPROCESS REPLACEGROUND (Ground Synonym)

The purpose of ground synonym replacement is to treat nodes with the names GND, GND !, GROUND or any
capital/lowercase variant thereof as synonyms for node 0. The general invocation is

General Form .PREPROCESS REPLACEGROUND <bool>

Arguments and

Options bool
If TRUE, Xyce will treat all instances of GND, GND !, GROUND, or any
capital/lowercase variant thereof, as synonyms for node 0. If FALSE,
Xyce will consider each term as a separate node. Only one . PREPROCESS
REPLACEGROUND statement is permissible in a given netlist file.

122

2.1.29. .PREPROCESS REMOVEUNUSED (Removal of Unused Components)

If a given netlist file contains devices whose terminals are all connected to the same node
(e.g.,R2 1 1 1M), it may be desirable to remove such components from the netlist before simulation
begins. This is the purpose of the command

General Form .PREPROCESS REMOVEUNUSED [<value>]

Arguments and
Options value
is a list of components separated by commas. The allowed values are

C Capacitor

Diode

Independent Current Source
Inductor

MOSFET

BIJT

Resistor

< W 0O X B+ O

Independent Voltage Source

Examples .PREPROCESS REMOVEUNUSED R, C

.PREPROCESS will attempt to search for all resistors and capacitors in a given netlist

file whose individual device terminals are connected to the same node and remove

these components from the netlist before simulation ensues. A list of components that

are supported for removal is given above. Note that for MOSFETS and BJTs, three

terminals on each device (the gate, source, and drain in the case of a MOSFET and the
collector, base, and emitter in the case of a BJT) must be the same for the device to be

removed from the netlist. As before, only one . PREPROCESS REMOVEUNUSED
line is allowed in a given netlist file.

123

2.1.30. .PREPROCESS ADDRESISTORS (Adding Resistors to Dangling Nodes)

We refer to a dangling node as a circuit node in one of the following two scenarios: either the node is
connected to only one device terminal, and/or the node has no DC path to ground. If several such nodes
exist in a given netlist file, it may be desirable to automatically append a resistor of a specified value
between the dangling node and ground. To add resistors to nodes which are connected to only one device
terminal, one may use the command

General Form

.PREPROCESS ADDRESISTORS ONETERMINAL <value>

Arguments and
Options

value
is the value of the resistor to be placed between nodes with only one device
terminal connection and ground. For instance, the command

Examples

.PREPROCESS ADDRESISTORS ONETERMINAL 1G

will add resistors of value 1G between ground and nodes with only one device
terminal connection and ground. The command

Examples

.PREPROCESS ADDRESISTORS NODCPATH <value>

acts similarly, adding resistors of value <VALUE> between ground and all nodes
which have no DC path to ground.

The .PREPROCESS ADDRESISTORS command is functionally different from
either of the prior . PREPROCESS commands in the following way: while the other
commands augment the netlist file for the current simulation, a . PREPROCESS
ADDRESISTORS statement creates an auxiliary netlist file which explicitly contains a
set of resistors that connect dangling nodes to ground. If the original netlist file
containing a . PREPROCESS ADDRESISTORS statement is called £ilename,
invoking Xyce on this file will produce a file filename_xyce.cir which contains
the resistors that connect dangling nodes to ground. One can then run Xyce on this file
to run a simulation in which the dangling nodes are tied to ground. Note that, in the
original run on the file £ilename, Xyce will continue to run a simulation as usual
after producing the file filename_xyce.cir, but this simulation will not include
the effects of adding resistors between the dangling nodes and ground. Refer to the
Xyce Users’ Guide [1l] for more detailed examples on the use of . PREPROCESS
ADDRESISTOR statements.

Note that it is possible for a node to have one device terminal connection and,
simultaneously, have no DC path to ground. In this case, if both a ONETERMINAL
and NODCPATH command are invoked, only the resistor for the ONETERMINAL
connection is added to the netlist; the NODCPATH connection is omitted.

As before, each netlist file is allowed to contain only one . PREPROCESS
ADDRESISTORS ONETERMINAL and one . PREPROCESS ADDRESISTORS
NODCPATH line each, or else Xyce will exit in error.

124

2.1.31. .PRINT (Print output)

Send analysis results to an output file.

Xyce allows multiple output files to be created during the run and supports several options for each.

General Form .PRINT <print type> [FILE=<output filename>]
+ [FORMAT=<STD |NOINDEX | PROBE | TECPLOT | RAW|CSV | GNUPLOT | SPLOT>]
+ [WIDTH=<print field width>]
+ [PRECISION=<floating point output precision>]
+ [FILTER=<absolute value below which a number outputs as 0.0>]
+ [DELIMITER=<TAB|COMMA>] [TIMESCALEFACTOR=<real scale factor>]
+ [OUTPUT_SAMPLE_STATS=<boolean>] [OUTPUT_ALL_SAMPLES=<boolean>]
+ <output variable> [output variable]x

Examples .print tran format=tecplot V(1) I(Vsrc) {V(1l)* (I (Vsrc)*%2.0)}
.PRINT TRAN FORMAT=PROBE FILE=foobar.csd V(1) {abs(V(1l))-5.0}

.PRINT DC FILE=foobar.txt WIDTH=19 PRECISION=15 FILTER=1.0e-10
+ I (VSOURCES5) I (VSOURCE®)

.print tran FORMAT=RAW V(1) I(Vsrc)

R1 1 0 100

X1 1 2 3 MySubcircuit

vl 3 0 1v

.SUBCKT MYSUBCIRCUIT 1 2 3
Rl1 1 2 100K

R2 2 4 50K

R3 4 3 1K

.ENDS

.PRINT DC V(X1:4) V(2) I(V1l)

Arguments and
Options

print type
A print type is the name of an analysis, one of the analysis specific print
subtypes, or a specialized output command.

125

Analysis Print Type Description

Sets default variable list and formats
.AC AC .

for print subtypes

Overrides variable list and format for
.AC AC_1IC

AC 1nitial conditions
.DC DC

.EMBDEDDEDSAMPLING ES

.HB HB

Overrides variable list and format for
.HB HB_FD .

HB frequency domain

Overrides variable list and format for
.HB HB_IC s ..

HB initial conditions

Overrides variable list and format for
.HB HB_STARTUP

HB start up

Overrides variable list and format for
.HB HB_TD . .

HB time domain

, Outputs Noise spectral density

.NOISE Noise

curves
.TRAN TRAN

Specialized Output Commands

Homotopy HOMOTOPY

Sets variable list and format for ho-
motopy

. SENS SENS

Sets variable list and format for sen-
sitivity

A netlist may contain many . PRINT commands, but only commands with
analysis types which are appropriate for the analysis being performed are
processed. This feature allows you to generate multiple formats and variable

sets in a single analysis run.

For analysis types that generate multiple output files, the print subtype
allows you to specify variables and output parameters for each of those
output files. If there is no . PRINT <subtype> provided in the net list,
the variables and parameters from the analysis type will be used.

FORMAT=<STD |NOINDEX | PROBE | TECPLOT | RAW|CSV |GNUPLOT | SPLOT>
The output format may be specified using the FORMAT option. The STD
format outputs the data divided up into data columns. The NOINDEX format
is the same as the STD format except that the index column is omitted. The
PROBE format specifies that the output should be formatted to be
compatible with the PSpice Probe plotting utility. The TECPLOT format
specifies that the output should be formatted to be compatible with the
Tecplot plotting program. The RAW format specifies that the output should

comply with the SPICE binary rawfile format. The -a command line option,
in conjunction with FORMAT=RAW on the . PRINT line, can then be used to

126

output an ASCII rawfile. The CSV format specifies that the output file
should be a comma-separated value file with a header indicating the
variables printed in the file. It is similar to, but not identical to using
DELIMITER=COMMA; the latter will also print a footer that is not
compatible with most software that requires CSV format. The GNUPLOT (or
SPLOT) format is the same as the STD format except that if . STEP is used
then two (or one) blank lines are inserted before the data for steps 1,2,3,...
where the first step is step 0. The SPLOT format is useful for when the
“splot” command in gnuplot is used to produce 3D perspective plots.

FILE=<output filename>
Specifies the name of the file to which the output will be written. See the
“Results Output and Evaluation Options” section of the Xyce Users’
Guide [1]] for more information on how this feature works for analysis types
(e.g., AC and HB) that can produce multiple output files.

WIDTH=<print field width>
Controls the output width used in formatting the output.

PRECISION=<floating point precision>
Number of floating point digits past the decimal for output data.

FILTER=<filter floor value>
Used to specify the absolute value below which output variables will be
printed as 0. 0.

DELIMITER=<TAB | COMMA>
Used to specify an alternate delimiter in the STD or NOINDEX format
output.

TIMESCALEFACTOR=<real scale factor>
Specify a constant scaling factor for time. Time is normally printed in units
of seconds, but if one would like the units to be milliseconds, then set
TIMESCALEFACTOR=1000.

OUTPUT_SAMPLE_STATS=<boolean>
Output the sample statistics for an EMBEDDEDSAMP LING analysis.This
argument is only supported for . PRINT ES. Its default value is true.
Section has more details.

OUTPUT_ALL_SAMPLES=<boolean>
Output all of the sample values for an EMBEDDEDSAMPLING analysis. This
argument is only supported for . PRINT ES. Its default value is false.
Section has more details.

<output variable>
Following the analysis type and other options is a list of output variables.
There is no upper bound on the number of output variables. The output is
divided up into data columns and output according to any specified options
(see options given above). Output variables can be specified as:

* V(<circuit node>) to output the voltage at <circuit node>

127

V(<circuit node>,<circuit node>) to output the voltage
difference between the first <circuit node> and second
<circuit node>

I (<device>) to output current through a two terminal device

I<lead abbreviation> (<device>) to output current into a
particular lead of a three or more terminal device (see the Comments,
below, for details)

P (<device>) or W(<device>) to output the power
dissipated/generated in a device. At this time, not all devices support
power calculations. In addition, the results for semiconductor devices
(D, I, M, Q and Z devices) and the lossless transmission device (T
device) may differ from other simulators. Consult the Features
Supported by Xyce Device Models table in section [2.3]and the
individual sections on each device for more details. Finally, power
calculations are not supported for any devices for . AC and .NOISE
analyses.

N (<device internal variable>) to output a specific device’s
internal variable. (The comments section below has more detail on this
syntax.)

{expression} to output an expression
<device>:<parameter> to output a device parameter

<model>:<parameter> to output a model parameter

When the analysis type is AC, HB or Noise, additional output variable
formats are available:

VR (<circuit node>) to output the real component of voltage
response at a point in the circuit

VI (<circuit node>) to output the imaginary component of
voltage response at a point in the circuit

VM (<circuit node>) to output the magnitude of voltage response

VP (<circuit node>) to output the phase of voltage response in
degrees

VDB (<circuit node>) to output the magnitude of voltage
response in decibels.

VR (<circuit node>, <circuit node>) to output the real
component of voltage response between two nodes in the circuit

VI (<circuit node>,<circuit node>) to output the
imaginary component of voltage response between two nodes in the
circuit

VM (<circuit node>,<circuit node>) to output the
magnitude of voltage response between two nodes in the circuit

VP (<circuit node>, <circuit node>) to output the phase of

128

voltage response between two nodes in the circuit in degrees

* VDB (<circuit node>,<circuit node>) to output the
magnitude of voltage response between two nodes in the circuit, in
decibels

* IR(<device>) to output the real component of the current through a
two terminal device

* II (<device>) to output the imaginary component of the current
through a two terminal device

e IM(<device>) to output the magnitude of the current through a two
terminal device

* IP (<device>) to output the phase of the current through a two
terminal device in degrees

* IDB (<device>) to output the magnitude of the current through a
two terminal device in decibels.

In AC and Noise analyses, outputting a voltage node without any of these
optional designators results in output of the real and imaginary parts of the
signal. Note that under AC and Noise analyses, current variables are only
supported for devices that have “branch currents’’that are part of the solution
vector. This includes the V, E, H and L devices. It also includes the
voltage-form of the B device.

Note that when using the variable list for time domain output, usage of
frequency domain functions like VDB can result in -Inf output being written
to the output file. This is easily solved by defining the time domain
equivalent command to specify the correct output for time domain data.

Further explanation of the current specifications is given in comments
section below.

When a . LIN analysis is done then additional output variable formats are
available via the .PRINT AC line, where <index1> and <index2>
must both be greater than 0 and also both less than or equal to the number of
ports in the netlist:

* SR(<index1>, <index2>) to output the real component of an
S-parameter

* SI (<index1>,<index2>) to output the imaginary component of
an S-parameter

* SM(<index1>, <index2>) to output the magnitude of an
S-parameter

* SP (<index1>, <index2>) to output the phase of an S-parameter in
degrees

* SDB (<index1>, <index2>) to output the magnitude of an
S-parameter in decibels.

* YR (<index1>, <index2>) to output the real component of a
Y-parameter

129

* YI (<index1>, <index2>) to output the imaginary component of a
Y-parameter

* YM(<index1>, <index2>) to output the magnitude of a
Y-parameter

* YP (<index1>, <index2>) to output the phase of a Y-parameter in
degrees

* YDB (<index1>, <index2>) to output the magnitude of a
Y-parameter in decibels.

* ZR(<index1>, <index2>) to output the real component of a
Z-parameter

* 7ZI (<index1>, <index2>) to output the imaginary component of a
Z-parameter

* ZM(<index1>, <index2>) to output the magnitude of a
Z-parameter

* ZP (<index1>, <index2>) to output the phase of a Z-parameter in
degrees

* ZDB (<index1>, <index2>) to output the magnitude of a
Z-parameter in decibels.

When the analysis type is Noise, additional output variable formats are
available via the .PRINT NOISE line for devices that support stationary
noise.

* INOISE to output the input noise contributions
* ONOISE to output the output noise contributions

* DNI (<deviceName>) to output the input noise contribution from
device <deviceName>

* DNI (<deviceName>, <noiseSource>) to output the input noise
contribution from source <noiseSource> for device <deviceName>

* DNO (<deviceName>) to output the output noise contribution from
device <deviceName>

* DNO (<deviceName>, <noiseSource>) to output the output
noise contribution from source <noiseSource> for device
<deviceName>

Comments Currents are positive flowing from node 1 to node 2 for two node devices, and
currents are positive flowing into a particular lead for multi-terminal devices.

* <circuit node> is simply the name of any node in your top-level circuit, or
<subcircuit name>:<node> to reference nodes that are internal to a
subcircuit.

* <device> is the name of any device in your top-level circuit, or
<subcircuit name>:<device> to reference devices that are internal to a
subcircuit.

130

<lead abbreviation> is a single character designator for individual leads
on a device with three or more leads. For bipolar transistors these are: ¢
(collector), b (base), e (emitter), and s (substrate). For mosfets, lead
abbreviations are: d (drain), g (gate), s (source), and b (bulk). SOI transistors
have: d, g, s, e (bulk), and b (body). For PDE devices, the nodes are numbered
according to the order they appear, so lead currents are referenced like
I1(<device>), [2(<device>), etc. In Xyce, a . PRINT line request like

I (Q1) is a parsing error for a multi-terminal device. Instead, an explicit lead
current designator like IC (Q1) must be used.

The "lead current" method of printing from devices in Xyce is done at a low
level with special code added to each device; the method is therefore only
supported in specific devices that have this extra code. So, if .PRINT I (Y)
does not work, for a device called Y, then you will need to attach an ammeter
(zero-volt voltage source) in series with that device and print the ammeter’s
current instead.

Lead currents of subcircuit ports are not supported. However, access is provided
via specific node names (e.g., X1 : internalNodeName) or specific devices
(e.g., X1 :v3) inside the subcircuit.

For STD formatted output, the values of the output variables are output as a
series of columns (one for each output variable).

When the command line option ~r <raw-file-name> is used, all of the
output is diverted to the raw-file-name file as a concatenation of the plots, and
each plot includes all of the variables of the circuit instead of the variable list(s)
given on the . PRINT lines in the netlist. Using the —a options in conjunction
with the —r option results in a raw file that is output all in ASCII characters.

Any output going to the same file from one simulation of Xyce results in the
concatenation of output. However, if a simulation is re-run then the original
output will we over-written.

During analysis a number of output files may be generated. The selection of
which files are created depends on a variety of factors, most obvious of which is
the . PRINT command. See section [2.1] for more details.

Frequency domain values are output as complex values for Raw, TecPlot and
Probe formats when a complex variable is printed. For STD and CSV formats,
the output appears in two columns, the real part followed by the imaginary part.
The print variables VR, VI, VM, VDB and VP print the scalar values for the
real part, imaginary part, magnitude, magnitude in decibels, and phase,
respectively.

When outputting a device or model parameter, it is usually necessary to specify
both the device name and the parameter name, separated by a colon. For
example, the saturation current of a diode model DMOD would be requested as
DMOD : IS. Section 2.1.31.12 on “Device Parameters and Internal Variables”
below gives more details and provides an example.

131

* The N () syntax is used to access internal solution variables that are not
normally visible from the netlist, such as voltages on internal nodes and/or
branch currents within a given device. The internal solution variables for each
Xyce device are not given in the Reference Guide sections on those devices.
However, if the user runs Xyce —-namesfile <filename> <netlist>
then Xyce will output into the first filename a list of all solution variables
generated by that netlist. Section[2.1.31.12]on “Device Parameters and Internal
Variables” below gives more details and provides an example.

* The DNT () and DNO () syntax is used to print out the individual input and
output noise contributions for each noise source within a device. The user can
get a listing of the noise source names for each device in a netlist by running
Xyce -noise_names_file <filename> <netlist>.The Xyce
Users’ Guide [[1] provides an example.

e If multiple . PRINT lines are given for the same analysis type, the same output
file name, and the same format, the variable lists of all matching . PRINT lines
are merged together in the order found, and the resulting output is the same as if
all the print line variable lists had been specified on a single . PRINT line.

* Attempting to specify multiple . PRINT lines for the same analysis type to the
same file with different specifications of FORMAT is an error.

* Xyce should emit a warning or error message, similar to “Could not open
filename” if: 1) the name of the output file is actually a directory name; or 2) the
output file is in a subdirectory that does not already exist. Xyce will not create
new subdirectories.

* The output filename specified with the -r command line option, to produce raw
file output, should take precedence over a F I LE= parameter specified on a
.PRINT line.

* The print statements for some analysis types could result in multiple output files.
For example, . PRINT HB will produce both frequency- and time-domain
output, and place these in different files. The default name of these files is the
name of the netlist followed by a data type suffix, followed by a format-specific
extension.

In Xyce, if a FILE option is given to such a print statement, only the “primary”
data for that analysis type is sent to the named file. The secondary data is still
sent to the default file name. This behavior may be subject to change in future
releases.

For analysis types that can produce multiple files, special . PRINT lines have
been provided to allow the user to control the handling of the additional files.
These additional print line specifiers are enumerated in the analysis-specific
sections below.

If one desires that all outputs for a given analysis type be given user-defined file
names, it is necessary to use additional print lines with additional FILE options.
For example, if one uses a FILE option to a . PRINT HB line, only
frequency-domain data will be sent to the named file. To redirect the

132

2.1.31.1.

time-domain data to a file with a user-defined name, add a . PRINT HB_TD
line. See the individual analysis types below for details of what additional print

statements are available.

Print AC Analysis

AC Analysis generates two output files, the primary output is in the frequency domain and the initial
conditions output is in the time domain.

Note that when using the . PRINT AC to create the variable list for DC type output, usage of frequency
domain functions like VDB can result in -Inf output being written to the output file. This is easily solved by
defining a .PRINT AC_IC command to specify the correct output for initial condition data.

Homotopy output can also be generated.

Table 2-18. Print AC Analysis Type

Trigger Files Columns/Description
.PRINT AC circuit-file. FD.prn INDEX FREQ
.PRINT AC FORMAT=GNUPLOT circuit-file. FD.prn INDEX FREQ
.PRINT AC FORMAT=SPLOT circuit-file FD.prn INDEX FREQ
.PRINT AC FORMAT=NOINDEX circuit-file. FD.prn FREQ
.PRINT AC FORMAT=CSV circuit-file FD.csv FREQ
.PRINT AC FORMAT=RAW circuit-file.raw FREQ
%ggiN;aAC FORMAT=RAW circuit-file.raw FREQ
.PRINT AC FORMAT=TECPLOT circuit-file FD.dat FREQ
.PRINT AC FORMAT=PROBE circuit-file.csd -

Add . oP To Netlist To Enable AC_IC Output
.PRINT AC_IC circuit-file. TD.prn INDEX TIME
.PRINT AC_IC FORMAT=GNUPLOT circuit-file. TD.prn INDEX TIME
.PRINT AC_IC FORMAT=SPLOT circuit-file.TD.prn INDEX TIME
.PRINT AC_IC FORMAT=NOINDEX circuit-file. TD.prn TIME
.PRINT AC_IC FORMAT=CSV circuit-file. TD.csv TIME
.PRINT AC_IC FORMAT=RAW circuit-file.raw TIME
%ggiN;aAC_IC FORMAT=RAW circuit-file.raw TIME
.PRINT AC_IC FORMAT=TECPLOT circuit-file. TD.dat TIME
.PRINT AC_IC FORMAT=PROBE circuit-file. TD.csd -

Command Line Raw Override Output

Xyce -r raw—file-name

raw-file-name

All circuit variables printed

Xyce -r raw—-file—-name -a

raw-file-name

All circuit variables printed

133

Table 2-18. Print AC Analysis Type

Trigger Files Columns/Description
Additional Output Available

.OP log file Operating point data

. SENS

.PRINT SENS

see

Print Sensitivity|

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY

S€e

Print Homotopy|

2.1.31.2.

Print DC Analysis

DC Analysis generates output based on the format specified by the . PRINT command.

Homotopy and sensitivity output can also be generated.

Table 2-19. Print DC Analysis Type

Trigger 1 Columns/Description
.PRINT DC circuit-file.prn INDEX
.PRINT DC FORMAT=GNUPLOT circuit-file.prn INDEX
.PRINT DC FORMAT=SPLOT circuit-file.prn INDEX
.PRINT DC FORMAT=NOINDEX circuit-file.prn -
.PRINT DC FORMAT=CSV circuit-file.csv -
.PRINT DC FORMAT=RAW circuit-file.raw -
Xyce —a circuit-file.raw -
.PRINT DC FORMAT=RAW

.PRINT DC FORMAT=TECPLOT circuit-file.dat -
.PRINT DC FORMAT=PROBE circuit-file.csd -

Xyce -r raw-file-name

Command Line Raw Override Output

raw-file-name

All circuit variables

Xyce -r raw-file-name -a

raw-file-name

All circuit variables

.OP

Additional Output Available

log file

Operating point data

. SENS

.PRINT SENS

see

Print Sensitivity

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY

N+

Print Homotopy|

134

2.1.31.3. Print Harmonic Balance Analysis

HB Analysis generates one output file in the frequency domain and one in the time domain based on the
format specified by the . PRINT command. Additional startup and initial conditions output can be
generated based on . OPTIONS commands.

Note that when using the . PRINT HB to create the variable list for time domain output, usage of
frequency domain functions like VDB can result in -Inf output being written to the output file. This is easily
solved by defininga .PRINT HB_TD, .PRINT HB_IC and .PRINT HB_STARTUP commands to
specify the correct output for the time domain data.

If . STEP is used with HB then the Initial Condition (IC) data will initially be output to a “tmp file” (e.g.,
<netlist-name>.hb_ic.prn.tmp). If that IC data meets the required tolerance then it will be
copied to the end of the <netlist-name>.hb_ic.prn file, and the tmp file will be deleted.

Homotopy output can also be generated.

Table 2-20. Print HB Analysis Type

Trigger 1 Columns/Description
circuit-file. HB.TD.prn INDEX TIME
.PRINT HB circuit-file. HB.FD.prn INDEX FREQ
circuit-file.hb_ic.prn INDEX TIME
circuit-file. HB.TD.prn INDEX TIME
.PRINT HB FORMAT=GNUPLOT circuit-file. HB.FD.prn INDEX FREQ
circuit-file.hb_ic.prn INDEX TIME
circuit-file. HB. TD.prn INDEX TIME
.PRINT HB FORMAT=SPLOT circuit-file. HB.FD.prn INDEX FREQ
circuit-file.hb_ic.prn INDEX TIME
circuit-file. HB. TD.prn TIME
.PRINT HB FORMAT=NOINDEX circuit-file. HB.FD.prn FREQ
circuit-file.hb_ic.prn TIME
circuit-file. HB. TD.csv TIME
.PRINT HB FORMAT=CSV Circuit-ﬁle.HB.FD.CSV FREQ
circuit-file.hb_ic.csv TIME
circuit-file. HB.TD.dat TIME
.PRINT HB FORMAT=TECPLOT circuit-ﬁle.HB.FD.dat FREQ
circuit-file.hb_ic.dat TIME
.PRINT HB_FD circuit-file. HB.FD.prn INDEX FREQ
.PRINT HB_FD FORMAT=GNUPLOT circuit-file. HB.FD.prn INDEX FREQ
.PRINT HB_FD FORMAT=SPLOT circuit-ﬁle.HB.FD.prn INDEX FREQ
.PRINT HB_FD FORMAT=NOINDEX circuit-ﬁle.HB.FD.prn FREQ
.PRINT HB_FD FORMAT=CSV circuit-file. HB.FD.csv FREQ
.PRINT HB_FD FORMAT=TECPLOT circuit-file. HB.FD.dat FREQ
.PRINT HB_TD circuit-file. HB.TD.prn INDEX TIME
.PRINT HB_TD FORMAT=GNUPLOT circuit-ﬁle.HB.TD.prn INDEX TIME
.PRINT HB_TD FORMAT=SPLOT circuit-file. HB.TD.prn INDEX TIME

135

Table 2-20. Print HB Analysis Type

Trigger Files Columns/Description
.PRINT HB_TD FORMAT=NOINDEX circuit-ﬁle.HB.TD.prn TIME
.PRINT HB_TD FORMAT=CSV circuit-file. HB.TD.csv TIME
.PRINT HB_TD FORMAT=TECPLOT circuit-file. HB.TD.dat TIME
Startup Period
.OPTIONS HBINT STARTUPPERIODS=<n> . .
circuit-file.startup.prn INDEX TIME
.PRINT HB_STARTUP
.OPTIONS HBINT STARTUPPERIODS=<n> . .
circuit-file.startup.prn INDEX TIME
.PRINT HB_STARTUP FORMAT=GNUPLOT
.OPTIONS HBINT STARTUPPERIODS=<n> Lo
& circuit-file.startup.prn INDEX TIME
.PRINT HB_STARTUP FORMAT=SPLOT
.OPTIONS HBINT STARTUPPERIODS=<n> .
. circuit-file.startup.prn TIME
.PRINT HB_STARTUP FORMAT=NOINDEX
.OPTIONS HBINT STARTUPPERIODS=<n>
.PRINT HB_STARTUP FORMAT=CSV circuit-file.startup.csv TIME
.OPTIONS HBINT STARTUPPERIODS=<n>
.OPTIONS HBINT STARTUPPERIODS=<n>
.PRINT HB_STARTUP FORMAT=TECPLOT circuit-file.startup.dat TIME
.OPTIONS HBINT STARTUPPERIODS=<n>
Initial Conditions
.OPTIONS HBINT SAVEICDATA=1 . . .
circuit-file.hb_ic.prn INDEX TIME
.PRINT HB_IC
.OPTIONS HBINT SAVEICDATA=1 . . .
circuit-file.hb_ic.prn INDEX TIME
.PRINT HB_IC FORMAT=GNUPLOT
.OPTIONS HBINT SAVEICDATA=1 . . .
circuit-file.hb_ic.prn INDEX TIME
.PRINT HB_IC FORMAT=SPLOT
.OPTIONS HBINT SAVEICDATA=1 L .
circuit-file.hb_ic.prn TIME
.PRINT HB_IC FORMAT=NOINDEX
.OPTIONS HBINT SAVEICDATA=1 L .
© ONS S c circuit-file.hb_ic.csv TIME
.PRINT HB_IC FORMAT=CSV
.OPTIONS HBINT SAVEICDATA=1 . . .
circuit-file.hb_ic.dat TIME

.PRINT HB_IC FORMAT=TECPLOT

Additional Output Available

.OP

log file

Operating point data

.SENS
.PRINT SENS

see

Print Sensitivity|

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY

S€e

Print Homotopy|

136

2.1.31.4. Print Noise Analysis

NOISE Analysis generates two output files, the primary output is in the frequency domain and the initial

conditions output is in the time domain.

Table 2-21. Print NOISE Analysis Type

Trigger Files Columns/Description
.PRINT NOISE circuit-file NOISE.prn INDEX FREQ
.PRINT NOISE FORMAT=GNUPLOT circuit-file NOISE.prn INDEX FREQ
.PRINT NOISE FORMAT=SPLOT circuit-file NOISE.prn INDEX FREQ
.PRINT NOISE FORMAT=NOINDEX circuit-file. NOISE.prn FREQ

.PRINT NOISE FORMAT=CSV circuit-file NOISE.csv FREQ

.PRINT NOISE FORMAT=TECPLOT circuit-file. NOISE.dat FREQ

Additional Output Available

.OP

log file

Operating point data

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY

S€e

Print Homotopy|

2.1.31.5. Print Transient Analysis

Transient Analysis generates time domain output based on the format specified by the . PRINT

command.

Homotopy and sensitivty output can also be generated.

Table 2-22. Print Transient Analysis Type

Trigger Files Columns/Description
.PRINT TRAN circuit-file.prn INDEX TIME
.PRINT TRAN FORMAT=GNUPLOT circuit-file.prn INDEX TIME
.PRINT TRAN FORMAT=SPLOT circuit-file.prn INDEX TIME
.PRINT TRAN FORMAT=NOINDEX circuit-file.prn TIME

.PRINT TRAN FORMAT=CSV circuit-file.csv TIME

.PRINT TRAN FORMAT=RAW circuit-file.raw TIME

xyce —a circuit-file.raw TIME

.PRINT TRAN FORMAT=RAW

.PRINT TRAN FORMAT=TECPLOT circuit-file.dat TIME

.PRINT TRAN FORMAT=PROBE

circuit-file.csd

Command Line Raw Override Output

Xyce -r raw-file-name

raw-file-name

All circuit variables printed

137

Table 2-22. Print Transient Analysis Type

Trigger

Xyce -r raw-file-name -a

Files

raw-file-name

Columns/Description

All circuit variables printed

Additional Output Available

.OP log file Operating point data
. SENS . ce .

see [Print Sensitivity|
.PRINT SENS

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY

see |Print Homotopy

2.1.31.6. Print Homotopy

Homotopy output is generated by the inclusion of the
.OPTIONS NONLIN CONTINUATION=<method> command.

Trigger

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY

Table 2-23. Print Homotopy
Files

circuit-file HOMOTOPY.prn

Columns/Description

INDEX TIME

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY FORMAT=GNUPLOT

circuit-file HOMOTOPY.prn

INDEX TIME

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY FORMAT=SPLOT

circuit-file HOMOTOPY.prn

INDEX TIME

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY FORMAT=NOINDEX

circuit-file HOMOTOPY.prn

TIME

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY FORMAT=CSV

circuit-file HOMOTOPY.csv

TIME

.OPTIONS NONLIN
CONTINUATION=<method>
.PRINT HOMOTOPY FORMAT=TECPLOT

circuit-file HOMOTOPY.dat

TIME

2.1.31.7. Print Sensitivity

Sensitivity is enabled by inclusion of the
.SENS command.

Steady-state sensitivities (adjoint or direct) and transient direct sensitivities will be handled by the .PRINT
SENS command. Transient adjoint, on the other hand, is handled by the .PRINT TRANADJOINT

138

command.

For transient sensitivity output, a TIME column will be included for the STD, GNUPLOT, SPLOT,
NOINDEX and CSV formats. For AC sensitivity output, a FREQ column will be included for the STD,
GNUPLOT, SPLOT, NOINDEX and CSV formats.

Table 2-24. Print Sensitivities for .TRAN and .DC
Trigger Files Columns/Description

.SENS objfunc=<obj> p=[p11] [, pnl=* obj dobj/d(p1) dobjld(p,)

circuit-file. SENS.prn
.PRINT SENS

.SENS objfunc=<obj> p=[p11l] [, pnl=* obj dobj/d(p1) dobj/d(p,)

circuit-file. SENS.prn
.PRINT SENS FORMAT=GNUPLOT

.SENS objfunc=<obj> p=[p11] [, pnl~* obj dobj/d(py) dobjld(p,)

.PRINT SENS FORMAT=SPLOT circuit-file. SENS.prn

.SENS objfunc=<obj> p=[p11] [, pnl* obj dobj/d(py) dobjld(p,)

.PRINT SENS FORMAT=NOINDEX circuit-file.SENS.prn

.SENS objfunc=<obj> p=[p11] [, pnl~* obj dobj/d(p1) dobjld(p,)

.PRINT SENS FORMAT=CSV circuit-file. SENS.csv

.SENS objfunc=<obj> p=[p1] [, pnl* obj dobj/d(p;) dobjld(p,)

circuit-file. SENS.dat
.PRINT SENS FORMAT=TECPLOT

Table 2-25. Print Sensitivities for .AC
Trigger Files Columns/Description

.SENS objfunc=<obj> p=[p11] [, pnl~* obj dobj/d(py) dobjld(p,)

PRINT SENS circuit-file. FD.SENS.prn

.SENS objfunc=<obj> p=[p11] [, pnl~* obj dobj/d(p1) dobjld(p,)

.PRINT SENS FORMAT=GNUPLOT circuit-file.FD.SENS prn

.SENS objfunc=<obj> p=[p11] [, pnl=* obj dobj/d(p1) dobjld(p,)

circuit-file. FD.SENS.prm
.PRINT SENS FORMAT=SPLOT

.SENS objfunc=<obj> p=[p11l]11[,pnl~* obj dobj/d(py) dobjld(p,)

circuit-file. FD.SENS.prn
.PRINT SENS FORMAT=NOINDEX

.SENS objfunc=<obj> p=[p11] [, pnl~* obj dobj/d(py) dobjld(p,)

PRINT SENS FORMAT—CSV circuit-file. FD.SENS.csv

.SENS objfunc=<obj> p=[p1] [, pnl=* obj dobjld(py) dobjl/d(p,)

ircuit-file. FD.SENS.
.PRINT SENS FORMAT=TECPLOT circuit-file SENS.dat

Table 2-26. Print Transient Adjoint Sensitivities
Trigger Files Columns/Description

.SENS objfunc=<obj> p=[p11l] [, pnl=* obj dobj/d(py) dobjld(p,)

circuit-file. TRADJ.prn
.PRINT TRANADJOINT

.SENS objfunc=<obj> p=[p11] [, pnl* obj dobj/d(py) dobjld(p,)

circuit-file. TRADJ.prn
.PRINT TRANADJOINT FORMAT=NOINDEX

139

Trigger

.SENS objfunc=<obj> p=[p11l]1 [, pnl~*
.PRINT TRANADJOINT FORMAT=CSV

Table 2-26. Print Transient Adjoint Sensitivities
Files

circuit-file. TRAD]J .csv

Columns/Description
obj dobj/d(p1) dobjld(p,)

.SENS objfunc=<obj> p=[p1] [, pnl *
.PRINT TRANADJOINT FORMAT=TECPLOT

circuit-file. TRADJ.dat

obj dobjld(p;) dobjlid(py)

2.1.31.8.

Print Embedded Sampling Analysis

EMBEDDEDSAMPLING Analysis generates one output file, with the information for each output variable
grouped in a set of contiguous columns, based on the format specified by the . PRINT command. The
arguments OUTPUT_SAMPLE_STATS and OUTPUT_ALL_SAMPLES are specific to .PRINT ES lines.
Section [2.1.5|has more details on their usage.

For a transient analysis, a TIME column will also be included for the STD, GNUPLOT, SPLOT,
NOINDEX and CSV formats. The TIME variable will also be included in the TECPLOT format for that

case.
Table 2-27. Print EMBEDDEDSAMPLING Analysis Type

Trigger Files Columns/Description
.PRINT ES circuit-file.ES.prn INDEX

.PRINT ES FORMAT=GNUPLOT circuit-file. ES.prn INDEX

.PRINT ES FORMAT=SPLOT circuit-file. ES.prn INDEX

.PRINT ES FORMAT=NOINDEX circuit-file.ES.prn -

.PRINT ES FORMAT=CSV circuit-file ES.csv -

.PRINT ES FORMAT=TECPLOT circuit-file.ES.dat -
2.1.31.9. Print Intrusive PCE Analysis

PCE Analysis generates one output file, with the information for each output variable grouped in a set of
contiguous columns, based on the format specified by the . PRINT command. The arguments

OUTPUT_SAMPLE_STATS and OUTPUT_ALL_SAMPLES are specific to .PRINT PCE lines. Section
has more details on their usage.

For a transient analysis, a TIME column will also be included for the STD, GNUPLOT, SPLOT,
NOINDEX and CSV formats. The TIME variable will also be included in the TECPLOT format for that

case.
Table 2-28. Print PCE Analysis Type
Trigger Files Columns/Description
.PRINT PCE circuit-file. PCE.prn INDEX
.PRINT PCE FORMAT=GNUPLOT circuit-file. PCE.prn INDEX

140

Table 2-28. Print PCE Analysis Type

Trigger Files Columns/Description
.PRINT PCE FORMAT=SPLOT circuit-file PCE.prn INDEX

.PRINT PCE FORMAT=NOINDEX circuit-file PCE.prn -

.PRINT PCE FORMAT=CSV circuit-file PCE.csv -

.PRINT PCE FORMAT=TECPLOT circuit-file PCE.dat -
2.1.31.10. Parameter Stepping

During parameter stepping, enabled with the . STEP command, the output generated by each of analysis
types varies. Generally the FORMAT indicates this variation, however some combinations of analysis and
format can result in additional variation.

The following table lists how the output differs for each analysis type and format.

Print Type Format Description

AC STD 1,3,4, 11,12, 13
AC GNUPLOT 1,3,4,11, 12, 13, 20
AC SPLOT 1,3,4,11,12, 13,21
AC Ccsv 4,11

AC PROBE 16

AC TECPLOT 4,12,13,18

AC RAW 19

AC RAW (Xyce -a) 19

AC_IC STD 1,4,11, 12, 13
AC_IC GNUPLOT 1,4,11,12,13,20
AC_IC SPLOT 1,4, 11, 12, 13, 21
AC_IC CsVv 4,11

AC_IC PROBE 16

AC_IC TECPLOT 12,13, 18

AC_IC RAW 19

AC_IC RAW (Xyce -a) 19

DC STD 1, 11,12

DC GNUPLOT 1,11, 12,20

DC SPLOT 1,11,12,21

DC csv 11

DC PROBE 17

DC TECPLOT 4,12, 13, 18

DC RAW 19

DC RAW (Xyce -a) 19

141

Print Type Format Description
HB_TD STD 1,2,4,11,12, 13
HB_TD GNUPLOT 1,2,4,11, 12, 13, 20
HB_TD SPLOT 1,2,4,11, 12,13, 21
HB_TD Ccsv 11
HB_TD TECPLOT 12,13, 18
HB_FD STD 1,3,4, 11,12, 13
HB_FD GNUPLOT 1,3,4,11, 12, 13, 20
HB_FD SPLOT 1,3,4,11, 12,13, 21
HB_FD Ccsv 4,11
HB_FD TECPLOT 4,12,13,18
HB_IC STD 1,2,4,11,12, 13
HB_IC GNUPLOT 1,2,4,11, 12, 13, 20
HB_IC SPLOT 1,2,4,11, 12,13, 21
HB_IC Ccsv 11
HB_IC TECPLOT 12,13, 18
HB_STARTUP STD 1,2,4,11,12, 13
HB_STARTUP GNUPLOT 1,2,4,11, 12, 13, 20
HB_STARTUP SPLOT 1,2,4,11, 12,13, 21
HB_STARTUP Ccsv 11
HB_STARTUP TECPLOT 12,13, 18
TRAN STD 1,2,11, 12
TRAN GNUPLOT 1,2,11, 12,20
TRAN SPLOT 1,2, 11, 12,21
TRAN csv 2,11
TRAN PROBE 17
TRAN TECPLOT 2,4,12, 13, 18
TRAN RAW 2,19
TRAN RAW (Xyce -a) 2,19

Specialized Output Commands
HOMOTOPY STD 1,2,4,11, 15
HOMOTOPY GNUPLOT 1,2,4,11, 15,20
HOMOTOPY SPLOT 1,2,4,11, 15, 21
HOMOTOPY csv 2,11
HOMOTOPY PROBE 17
HOMOTOPY TECPLOT 2,4,15,18
SENSITIVITY STD 1,2, 11, 14
SENSITIVITY GNUPLOT 1,2,11, 14, 20

142

Print Type Format Description

SENSITIVITY SPLOT 1,2, 11, 14, 21
SENSITIVITY CsSVv 2,11
SENSITIVITY TECPLOT 2,14, 18

1 INDEX column added to output variable list

2 TIME column added to output variable list

3 FREQ column added to output variable list

4 Frequency domain data written as Re (var) and
Im (var)

11 INDEX resets to zero at start of each .STEP

17 Prints ’'End of Xyce(TM) Parameter Sweep’ at
end of .STEP simulation

13 Prints ’'End of Xyce(TM) Simulation’ at end of
non-.STEP simulation

14 Prints ’'End of Xyce(TM) Sensitivity
Simulation’ at end of simulation

15 Prints 'End of Xyce(TM) Homotopy Simulation’
at end of simulation

16 Two ’"#;’ at the end of each .STEP (BUG)

17 One ’'#;’ at end of each .STEP

18 New ZONE for each .STEP, and AUXDATA for each
.STEP parameter

19 Prints ’"Plotname: Step Analysis: Step s of n
params’ at the start of each .STEP
Inserts two blank lines before the data for

20 steps 1,2,3,... where the first step is step
0
Inserts one blank line before the data for

21 steps 1,2,3,... where the first step is step

0

2.1.31.11. Print Wildcards

Wildcards are supported on . PRINT lines, as described below. In particular, vV (+) will print all of the
node voltages in the circuit for all analysis modes. The P () and W (x) wildcards are supported for
analysis modes (TRAN and DC) that support power calculations.

For TRAN and DC analysis modes, I (*) will print all of the currents. This includes both solution
variables, which generally means those associated with voltage sources and inductors that are not coupled
through a mutual inductance device, and the lead currents associated with most other devices. For TRAN
and DC, the T (*) wildcard also supports lead currents for the multi-terminal J, M and Z devices via
IB(x),ID(*),IG(*) and IS (), and for the multi-terminal Q device via IB (*), IC (), IE (*) and

143

IS (x).The IE (%) wildcard is also supported for SOI devices. A request for I () will not return any of
the lead currents for J, M, Q or Z devices. Wildcards of the form I1 (), that use numerical designators,
are only supported for the T and YGENEXT devices. Finally, as an example, a request for IC(¥) in a netlist
that does not contain any Q devices will be silently ignored.

For AC and NOISE analysis modes, the I (*) operator will only output the branch currents, since lead
currents are not supported for those two analysis modes. The VR (*), VI (%), VP (%), VM (%), VDB (%),
IR(%),II(x),IP(x),IM(x) and IDB (*) wildcards are also supported for these two analysis
modes.

There is also support for the * character (meaning “zero or more characters’) and the ? character (meaning
“any one character”) in more complex wildcards, where the * and/or ? characters can be in any positions in
the wildcard specification. For example, V (X1+) will output the voltage at all nodes in subcircuit X1 for
all analysis modes. As another example, V (1?) will output the voltage at all nodes that have two-character
names that start with the character 1. These more complex wildcards should work for all supported voltage
operators.

Similarly, P (X1x) or W(X1*) will output the power for all devices, that support power calculations, in
subcircuit X1. Devices that don’t support power calculations will be silently omitted. Alternately, P (R?)
or W (R?) will output the power for all resistors that have two-character names.

More complex wildcards are also supported for all valid current operators. The caveats are that for DC and
TRAN analyses, the wildcard will include both branch and lead currents. For AC and NOISE analyses, the
wildcard will only include branch currents.

2.1.31.12. Device Parameters and Internal Variables

This subsection describes how to print out device parameters and device internal variables, via a simple
V-R circuit example. In particular, the example given below gives illustrative examples of how to print out
the voltage at a node (V (1)), the current through a device (I (V1)), the current through a device using
using an internal solution variable (N (V1_branch)), a device parameter (R1 : R) and the power
dissipated by a device (P (R1)). It also shows how device parameters and internal variables can be used in
a Xyce expression.

* filename is example.cir

.DC V1 1 2 1

vi1io01

R1 10 2

.PRINT DC FORMAT=NOINDEX PRECISION=2 WIDTH=8

+ V(1) I(V1) N(Vl_branch) R1:R P(R1l) {R1:RxN(V1_branch)«*I(V1)}
.END

The Xyce output would then be (where the NOFORMAT, WIDTH and PRECISION arguments were used
mainly to format the example output for this guide):

V(1) I(V1) N (V1_BRANCH) R1:R P (R1) {R1:R*N(V1_BRANCH) I (1
1.00e+00 -5.00e-01 -5.00e-01 2.00e+00 5.00e-01 5.00e-01
2.00e+00 -1.00e+00 -1.00e+00 2.00e+00 2.00e+00 2.00e+00

144

The internal solution variables for each Xyce device are typically not given in the Reference Guide sections
on those devices. However, if for the example given above, the user runs Xyce -namesfile
example_names example.cir then the file example_names would contain a list of the two
solution variables that are accessible with the N () syntax on a .PRINT line. In this simple example, they
are the voltage at Node 1 and the branch current through the voltage source V1. If V1 was in a subcircuit
then the example_names file would have shown the “fully-qualified” device name, including the
subcircuit names.

HEADER
0 v1l_branch
1 1

Additional (and more useful) examples for using the N() syntax to print out:

» The M, R, B and H internal variables for mutual inductors are given in Section[2.3.6] This includes
an example where the mutual inductor is in a sub-circuit.

e The g, (tranconductance), Vi, Vi, Ve, Vi, and Vg, internal variables for the BSIM3 and BSIM4
models for the MOSFET are given in Section [2.3.20),

In these two cases, only the M and R variables for the mutual inductors are actually solution variables.
However, the -namesfile approach can still be used to determine the fully-qualified Xyce device names
required to use the N () syntax.

145

2.1.32. .RESULT (Print results)

Outputs the value of user-specified expressions at the end of a simulation.

General Form .RESULT {output variable}

Examples .RESULT {V (a)}
.RESULT {V(a)+V(b)}

Comments The .RESULT line must use an expression. The line . RESULT V (a) will resultin a
parse error.

Each .RESULT line must have only one expression. Multiple . RESULT lines can be
used though to output multiple columns in the output . res file.

Xyce will not produce output for . RESULT statements if there are no . STEP
statements in the netlist.

2.1.32.1. Example Netlist

.RESULT lines can be combined with . STEP lines to output the ending values of multiple simulation runs
in one . res file, as shown in the following usage example. The resultant . res file will have four lines
that give the final values of the expressions {v (b) } and {v (b) xv (b) /2} at time=0.75 seconds for all
four requested combinations of R2 and v_amplitude.

Simple Example of .RESULT capability with .STEP
Rl a b 10.0
R2 b 0 2.0

.GLOBAL_PARAM v_amplitude=2.0
Va a 0 sin (5.0 {v_amplitude} 1.0 0.0 0.0)

.PRINT TRAN v (b) {v(b)xv(b)/2}
.TRAN 0 0.75

.STEP R2 1.0 2.0 1.0
.STEP v_amplitude 1.0 2.0 1.0

.RESULT {v(b)}
.RESULT {v(b)=*v(b)/2}

.END

146

2.1.33. . SAMPLING (Sampling UQ Analysis)

Calculates a full analysis (.DC, . TRAN, .AC, etc.) over a distribution of parameter values. Sampling
operates similarly to . STEP, except that the parameter values are generated from random distributions
rather than sweeps. If used in conjunction with projection-based PCE methods, then the sample points are
not based on random samples. Instead they are based on the quadrature points.

General Form .SAMPLING
+ param=<parameter name>, [parameter name] *
+ type=<parameter type>, [parameter type]*
+ means=<mean>, [mean] *
+ std_deviations=<standard deviation>, [standard
deviation] *

Examples .SAMPLING

param=R1
type=normal
means=3K
std_deviations=1K

+ + + +

.SAMPLING

+ param=R1, R2

+ type=uniform,uniform
+ lower_bounds=1K, 2K

+ upper_bounds=5K, 6K

.SAMPLING
+ useExpr=true

.options SAMPLES numsamples=10000

.options SAMPLES numsamples=25000
+ OUTPUTS={R1:R},{V(1)}
+ SAMPLE_TYPE=MC

.options SAMPLES numsamples=1000
+ MEASURES=maxSine
+ SAMPLE_TYPE=LHS

.options samples numsamples=30
+ covmatrix=le6,1.0e-3,1.0e-3,4e-14
+ OUTPUTS={V (1)}, {R1:R}, {Cl:C}

Arguments and

Options param
Names of the parameters to be sampled. This may be any of the parameters
that are valid for . STEP, including device instance, device model, or global

147

parameters. If more than one parameter, then specify as a comma-separated
list.

type
Distribution type for each parameter. This may be uniform or normal. If
more than one parameter, then specify as a comma-separated list.

means
If using normal distributions, the mean for each parameter must be specified.
If more than one parameter, then specify as a comma-separated list.

std_deviations
If using normal distributions, the standard deviation for each parameter must
be specified. If more than one parameter, then specify as a comma-separated
list.

lower bounds
If using uniform distributions, the lower bound must be specified. This is
optional for normal distributions. If used with normal distributions, may
alter the mean and standard deviation. If more than one parameter, then
specify as a comma-separated list.

upper_bounds
If using uniform distributions, the upper bound must be specified. This is
optional for normal distributions. If used with normal distributions, may
alter the mean and standard deviation. If more than one parameter, then
specify as a comma-separated list.

useExpr
If this argument is set to true, then the sampling algorithm will set up
random inputs from expression operators such as AGAUSS and AUNIF. In
this case it will also ignore the list of parameters on the . SAMPLING
command line. For a complete description of expression-based random
operators, see the expression documentation in section [2.2]

Comments In addition to the . SAMPLING command, this analysis requires a
.options SAMPLES command as well. The . SAMPLING command specifies
parameters and their attributes, either using the useExpzr option, or with
comma-separated lists. The . options SAMPLES command specifies analysis
options, including the number of samples, the type of sampling (LHS or MC) and the
outputs and/or measures for which to compute statistics. This line also allows one to
specify a non-intrusive Polynomial Chaos Expansion (PCE) method (either regression
or projection PCE). To see the details of the .options SAMPLES command, see
table

On the . SAMPLING command line, if not using useExpr, parameters and their
attributes must be specified using comma-separated lists. The comma-separated lists
must all be the same length.

148

2.1.34. . SAVE (Save operating point conditions)

Stores the operating point of a circuit in the specified file for use in subsequent simulations. The data may
be saved as . IC or . NODESET lines.

General Form .SAVE [TYPE=<IC|NODESET>] [FILE=<filename>] [LEVEL=<all|none>]
+ [TIME=<save_time>]

Examples .SAVE TYPE=IC FILE=mycircuit.ic
.SAVE TYPE=NODESET FILE=myothercircuit.ic

.include mycircuit.ic

Comments The file created by . SAVE will contain . IC or . NODESET lines containing all the
voltage node values at the DC operating point of the circuit. The default TYPE is
NODESET. The default filenameis netlist.cir.ic.

The resulting file may be used in subsequent simulations to obtain quick DC
convergence simply by including it in the netlist, as in the third example line above.
Xyce has no corresponding . LOAD statement.

The LEVEL parameter is included for compatibility with HSPICE netlists. If none is
specified, then no save file is created. The default LEVEL is al1.

TIME is also an HSPICE compatibility parameter. This is unsupported in Xyce. Xyce
outputs the save file only at time=0.0.

149

2.1.35. . SENS (Compute DC, AC or transient sensitivities)

Computes sensitivies for a user-specificed objective function with respect to a user-specified list of circuit
parameters.

General Form .SENS objfunc=<output expression(s)> param=<circuit
parameter (s) >

Examples .SENS objfunc={0.5% (V(B)-3.0)*%2.0} param=R1:R,R2:R
.options SENSITIVITY direct=1 adjoint=1

.SENS objfunc={I (VM) }, {V(3)*V(3)} param= Q2N2222:bf

.param RES=1k
.SENS objfunc={RES*V (3)*V(3)} param=Cl:C

.param res=2
.func powerTestFunc(I) {resxIx*I}
.SENS objfunc={powerTestFunc (I (V1l))} param=R1:R

.global_param res=2
.SENS objfunc={res*I(V1l)} param=R1:R

.global_param res=3.0k
.SENS objfunc={res*I(V1l)} param=res

* AC example using objvars
.sens objvars=2,3 param=rl:r,cl:c,vl:acmag

* AC example using acobjfunc
.sens acobjfunc={2.0%xV(2)},{I(VM)} param=rl:r,cl:c

Comments This capability can be applied to either DC, transient or AC analysis. Both direct and
adjoint sensitivities are supported. The user can optionally request either direct or
adjoint sensitivities, or both.

Although Xyce will allow the user to specify both direct and adjoint, one would
generally not choose to do both. The best choice of sensitivity method depends on the
problem. For problems with a small number of parameters, and (possibly) lots of
objective functions, then the direct method is a more efficient choice. For problems
with large numbers of parameters, but a small number of objective functions, the
adjoint method is more efficient.

For all variants of sensitivity analysis, it is necessary to specify circuit parameters on
the . SENS line in a comma-separated list. Unlike the SPICE version, this capability
will not automatically use every parameter in the circuit. It is also necessary for all
variations of sensitivity analysis to specify at least one objective function. This

150

capability will not assume any particular objective function. Also, it is possible to
specify multiple objective functions, in a comma-separated list.

As noted, for transient analysis, both types of sensitivities are supported. Direct
sensitivities are computed at each time step during the forward calculation. Transient
adjoint sensitivities, in contrast, must be computed using a reverse time integration
method. The reverse time integration must be performed after the original forward
calculation is complete. As such, transient adjoint sensitivity calculations can be
thought of as a post-processing step. One consequence of this is that transient adjoint
output must be specified using the .PRINT TRANADJOINT type, rather than the
.PRINT SENS type.

If transient adjoints are specified, the default behavior for the capability is for a
transient sensitivity calculation be performed for each time step, even if the forward
transient simulation consists of millions of steps. For adjoint calculations, this can be
problematic, as adjoint methods (noted above) are not very efficient when applied to
problems with a large number of objective functions. Each time step, from the point of
view of transient adjoints, is effectively a separate objective function. As such, this
isn’t the best use of adjoints. One can specify a list of time points for which to
compute transient adjoint sensitivities. For many practical problems, the sensitivies at
only one or a handful of points is needed, so this is a good way to mitigate the
computational cost of adjoints. The Xyce Users’ Guide [1] provides an example.

If performing a sensitivity calculation with AC analysis, there are two options for the
specification of the objective function. These options are both different from the DC
and TRAN method. Instead of specifying objective functions with the parameter
objfunc, one should either use objvars or acobjfunc. The parameter
objvars should be followed by a comma separated list of voltage nodes. The
parameter acob jfunc should be followed by a comma separated list of objective
functions. It is not possible to use both specifications in the same netlist.

151

2.1.36. . STEP (Step Parametric Analysis)

Calculates a full analysis (.DC, . TRAN, .AC, etc.) over a range of parameter values. This type of analysis
is very similar to .DC analysis. Similar to .DC analysis, .STEP supports sweeps which are linear, decade
logarithmic, octave logarithmic, a list of values, or over a multivariate data table.

LIN Linear sweep
The sweep variable is swept linearly from the starting to the ending value.

OCT Sweep by octaves
The sweep variable is swept logarithmically by octaves.

DEC Sweep by decades
The sweep variable is swept logarithmically by decades.

LIST Sweep over specified values
The sweep variable is swept over an enumerated list of values.

DATA Sweep over table of multivariate values
The sweep variables are swept over the rows of a table.

2.1.36.1. Linear Sweeps

General Form .STEP [LIN] <parameter name> <initial> <final> <step>

Examples .STEP R1 45 50 5
.STEP V1 20 10 -1
.STEP LIN V1 20 10 -1
.STEP TEMP -45 -55 -10
.STEP C101:C 45 50 5
.STEP DLEAK:IS 1.0e-12 1.0e-11 1.0e-12

.global_param vl_val=10
Vvl 1 0 DC {vl_val}
.STEP v1 val 20 10 -1

.param v2_val=10
V2 2 0 DC {v2_val}
.STEP v2_val 20 10 -1

.data table

cl rl

le-8 1k

2e-8 0.5k
3e-8 0.25k
.enddata

.STEP data=table

+ + + +

152

Arguments and
Options

parameter name
Name of the parameter to be swept. This may be the special parameter name
TEMP (the ambient simulation temperature), a device name, device instance
or model parameter name, or global parameter name as defined in a
.global_param or globally-scoped . param statement.

If a device name is given, the primary parameter for that device is taken as
the parameter; in the first two examples above, the primary parameters of the
devices R1 and V1 are stepped (resistance and DC voltage, respectively).
The C, L and I devices are then the other devices with primary parameters,
which are the capacitance, inductance and DC current, respectively.

To specify a device instance parameter other than the device’s primary
parameter, or if the device has no primary parameter, use the syntax
<device name>:<parameter name>, as in the fourth example above.

To sweep a device model parameter, use the syntax <model

name>:<parameter name>, as in the fifth example above.
initial

Initial value for the parameter.

final
Final value for the parameter.

step
Value that the parameter is incremented at each step.

Comments

For linear sweeps, the LIN keyword is optional.

STEP parameter analysis will sweep a parameter from its initial value to its final
value, at increments of the step size. At each step of this sweep, it will conduct a full
analysis (.DC, . TRAN, .AC, etc.) of the circuit.

The specification is similar to that of a . DC sweep, except that unlike .DC, only one
parameter may be swept on each . STEP line. Multiple . STEP lines may be
specified, forming nested step loops. The variables will be stepped in order such that
the first . STEP line that appears in the netlist will be the innermost loop, and the last
. STEP line will be the outermost.

Output, as designated by a . PRINT statement, is slightly more complicated in the
case of a . STEP simulation. If the user has specified a . PRINT line in the input file,
Xyce will output two files. All steps of the sweep will be output to a single file as
usual, but with the results of each step appearing one after another with the “Index”
column starting over at zero. Additionally, a file with a “.res” suffix will be produced
indicating what parameters were used for each iteration of the step loops; this file will
always be in columnar text format, irrespective of any FORMAT= option specified on
.PRINT lines. If . RESULT lines (see section [2.1.32) appear in the netlist, the “.res”
file will also contain columns for each expression given on the . RESULT lines, and
the value of the result expression will be printed for each step taken.

153

Note that analysis lines in Xyce do not currently support use of expressions to define
their parameters (e.g., end times for . TRAN analysis, or fundamental frequencies for
. HB analysis), and so it is not possible to use stepped parameters to vary how the
analysis will be run at each step. If each step requires different analysis parameters,
this would have to be accomplished by performing separate runs of Xyce.

If the stop value is smaller than the start value, the step value should be negative. If a
positive step value is given in this case, only a single point (at the start value) will be
performed, and a warning will be emitted.

2.1.36.2. Decade Sweeps

General Form .STEP DEC <sweep variable name> <start> <stop> <points>

Examples .STEP DEC VIN 1 100 2
.STEP DEC R1 100 10000 3
.STEP DEC TEMP 1.0 10.0 3

Comments The stop value should be larger than the start value. If a stop value smaller than the
start value is given, only a single point at the start value will be performed, and a
warning will be emitted. The points value must be an integer.

2.1.36.3. Octave Sweeps

General Form .STEP OCT <sweep variable name> <start> <stop> <points>

Examples .STEP OCT VIN 0.125 64 2
.STEP OCT TEMP 0.125 16.0 2
.STEP OCT R1 0.015625 512 3

Comments The stop value should be larger than the start value. If a stop value smaller than the
start value is given, only a single point at the start value will be performed, and a
warning will be emitted. The points value must be an integer.

2.1.36.4. List Sweeps

General Form .STEP <sweep variable name> LIST <val> <val> <val>...

Examples .STEP VIN LIST 1.0 2.0 10. 12.0
.STEP TEMP LIST 8.0 21.0

2.1.36.5. Data Sweeps

154

General Form .STEP DATA=<data table name>

Examples .STEP data=resistorValues

.data resistorValues

+ rl r2

+ 8.0000e+00 4.0000e+00
+ 9.0000e+00 4.0000e+00
.enddata

155

2.1.37. . SUBCKT (Subcircuit)

The . SUBCKT statement begins a subcircuit definition by giving its name, the number and order of its
nodes and the names and default parameters that direct its behavior. The . ENDS statement signifies the end
of the subcircuit definition. See Section [2.3.33] for more information on using subcircuits with the X

device.

General Form .SUBCKT <name> [node]*
+ [PARAMS: [<name>=<value>]x*]

.ENDS

Examples .SUBCKT OPAMP 10 12 111 112 13
_ENDS
.SUBCKT FILTER1 INPUT OUTPUT PARAMS: CENTER=200kHz,
+ BANDWIDTH=20kHz
_ENDS
.SUBCKT PLRD IN1 IN2 IN3 OUT1
+ PARAMS: MNTYMXDELY=0 IO_LEVEL=1
_ENDS
.SUBCKT 74LS01 A B Y

+ PARAMS: MNTYMXDELY=0 IO_LEVEL=1

.ENDS

Arguments and

Options
name

The name used to reference a subcircuit.

node
An optional list of nodes. This is not mandatory since it is feasible to define
a subcircuit without any interface nodes.

PARAMS:
Keyword that provides values to subcircuits as arguments for use as
expressions in the subcircuit. Parameters defined in the PARAMS : section
may be used in expressions within the body of the subcircut and will take the
default values specified in the subcircuit definition unless overridden by a
PARAMS : section when the subcircuit is instantiated.

156

Comments

A subcircuit designation ends with a . ENDS command. The entire netlist between
. SUBCKT and .ENDS is part of the definition. Each time the subcircuit is called via
an X device, the entire netlist in the subcircuit definition replaces the X device.

There must be an equal number of nodes in the subcircuit call and in its definition. As
soon as the subcircuit is called, the actual nodes (those in the calling statement)
substitute for the argument nodes (those in the defining statement).

Node zero cannot be used in this node list, as it is the global ground node.

Subcircuit references may be nested to any level. Subcircuits definitions may also be
nested; a . SUBCKT statement and its closing . ENDS may appear between another
. SUBCKT/.ENDS pair. A subcircuit defined inside another subcircuit definition is
local to the outer subcircuit and may not be used at higher levels of the circuit netlist.

Subcircuits should include only device instantiations and possibly these statements:
* .MODEL (model definition)
* .PARAM (parameter)
e .FUNC (function)

Models, parameters, and functions defined within a subcircuit are scoped to that
definition. That is they are only accessible within the subcircuit definition in which
they are included. Further, if a . MODEL, . PARAM or a . FUNC statement is included in
the main circuit netlist, it is accessible from the main circuit as well as all subcircuits.

Node, device, and model names are scoped to the subcircuit in which they are defined.
It is allowable to use a name in a subcircuit that has been previously used in the main
circuit netlist. When the subcircuit is flattened (expanded into the main netlist), all of
its names are given a prefix via the subcircuit instance name. For example, Q17
becomes X3 : Q17 after expansion. After expansion, all names are unique. The single
exception occurs in the use of global node names, which are not expanded.

Additional illustative examples of scoping are given in the “Working with Subcircuits
and Models” section of the Xyce Users’ Guide [1]] . Those examples apply to models
and functions also.

157

2.1.38. . TRAN (Transient Analysis)

Calculates the time-domain response of a circuit for a specified duration.

General Form .TRAN <initial step value> <final time value>
+ [<start time value> [<step ceiling value>]] [NOOP] [UIC]
+ [{schedule(<time>, <maximum time step>, ...)}]
Examples .TRAN lus 100ms

.TRAN 1Ims 100ms Oms .lms
.TRAN 0 2.0e-3 {schedule(0.5e-3, 0, 1.0e-3, 1.0e-6, 2.0e-3, 0)}

Arguments and

Options initial step value

Used to calculate the initial time step (see below).

final time value
Sets the end time (duration) for the analysis.

start time value
Sets the time at which output of the simulation results is to begin. Defaults
to zero.

step ceiling value
Sets a maximum time step. Defaults to ((final time value)-(start time
value))/10, unless there are breakpoints (see below).

NOOP or UIC
These two options are synonyms which specify that no operating point
calculation is to be performed, and that the specified initial condition (from
C lines or capacitor “IC” parameters) should be used as the transient initial
condition instead. Unspecified values are set to zero. Finally, the .IC
capability can only set voltage values, not current values.

schedule (<time>, <maximum time step>, ...)
Specifies a schedule for maximum allowed time steps. The list of arguments,
to, Aty, t1, Aty, etc. implies that a maximum time step of Ary will be used
while the simulation time is greater than or equal to 7y and less than #;. A
maximum time step of Af; will be used when the simulation time is greater
or equal to than #; and less than #,. This sequence will continue for all pairs
of t;, At; that are given in the {schedule()}. If Az is zero or negative, then no
maximum time step is enforced (other than hardware limits of the host
computer).

Comments The transient analysis calculates the circuit’s response over an interval of time
beginning with TIME=0 and finishing at <final time value>.Usea .PRINT
(print) statement to get the results of the transient analysis.

158

Before calculating the transient response Xyce computes a bias point for the circuit
that is different from the regular bias point. This is necessary because at the start of a
transient analysis, the independent sources can have different values than their DC
values. Specifying NOOP on the . TRAN line causes Xyce to begin the transient
analysis without performing the usual bias point calculation.

The time integration algorithms within Xyce use adaptive time-stepping methods that
adjust the time-step size according to the activity in the analysis. The default ceiling
for the internal time step is (<final time value>-<start time

value>) /10. This default ceiling value is automatically adjusted if breakpoints are
present, to ensure that there are always at least 10 time steps between breakpoints. If
the user specifies a ceiling value, however, it overrides any internally generated ceiling
values.

Xyce is not strictly compatible with SPICE in its use of the values on the . TRAN line.
In SPICE, the first number on the . TRAN line specifies the printing interval. In Xyce,
the first number is the <initial step wvalue>, which is used in determining the
initial step size. The actual initial step size is chosen to be the smallest of three
quantities: the <inital step value>,the <step ceiling value>,or
1/200th of the time until the next breakpoint.

The third argument to . TRAN simply determines the earliest time for which results
are to be output. Simulation of the circuit always begins at TIME=0 irrespective of the
setting of <start time value>.

159

2.1.39. Miscellaneous Commands

2.1.39.1. *» (Comment)

A netlist comment line. Whitespace at the beginning of a line is also interpreted as a comment unless it is
followed by a + symbol, in which case it treats the line as a continuation.

2.1.39.2. ; (In-line Comment)

Add a netlist in-line comment.

2.1.39.3. + (Line Continuation)

Continue the text of the previous line.

160

2.2, Expressions

Xyce supports use of mathematical expressions in several contexts:
* for the values of device instance and model parameters.
* in definition of parameters in . PARAM and . GLOBAL_PARAM statements.
* for output on .PRINT lines.

In all contexts where expressions are allowed, it is best practice to enclose them in curly braces ({}). For
netlist compatibility with other simulators, expressions may be enclosed in single quotation marks instead
(). Also, in some circumstances (such as .paramand .global_param expressions), Xyce will accept
expressions that are not surrounded by either braces or single quotes. However, it is recommended that the
braces be used in netlists written specifically for Xyce, as this will be the most reliable option.

The expression package in Xyce supports all standard arithmetic operators, trigonometric functions, a
collection of arithmetic functions, and some functions to mimic the pulse, sine, exp, and sffm
time-dependent functions in the independent current and voltage sources. These functions are listed in

tables 2-32] and 2-33]

Table 2-31. Operators

gl;::a(:f)r Operator Meaning
arithmetic + addition or string concatenation
- subtraction
* multiplication
/ division
* % exponentiation
% modulus
logicaﬂ ~ unary NOT
boolean OR
» boolean XOR
& boolean AND
relational == equality
1= non-equality
> greater-than
>= greater-than or equal
< less-than
<= less-than or equal
conditional ? o Ternary conditional operator
Operators

"Logical and relational operators are used only with the IF () function and the ternary operator for its conditional argument.

161

Special note on ternary operator Note that the ternary operator is available for use in Xyce. This
operator is the same as the ternary conditional operator in C, C++, Perl, and others. The ternary expression
t?a : bisequivalent to the function IF (t, a,b) described below. However, please be aware that the
ternary operator has extremely low precedence just as it has in these other languages, and if parentheses are
not used to make explicit which expressions are supposed to be part of the condition or true and false
values, the resolution of the expression may be surprising.

For example, the expression
l+a==b71:0+1
is equivalent to the expression
IF (1+a==b, 1, 0+1)
because the “+” and “==" operators have higher precedence than either “?” or “:”. Similarly:
A==B?1:0 + A==C?2:0 + A==D?3:0
is equivalent to
if (A==B,1,IF(0 + A==C,2,IF(0 + A==D,3,0)))

Given the way the original expression is written, it appears that the intent was that the expression be
evaluated as:

If(A==B,1,0) + IF(A==C,2,0) + IF(A==D,3,0)

This is not how the expression will be evaluated. Fortunately, because of the use of “0” to the right of the
colons in each case, the expression just happens to give the desired result in either interpretation, but Xyce
is using the nested IF equivalent.

Finally, due to restrictions on the expression parser, it is essential that ternary operators never be written
so that a bare parameter is directly to the left of a colon. This is because colons are actually legal
characters in parameters — the colon represents hierarchy, so that R1 : R means the R parameter of device
R1, and X1 : A refers to the node A of subcircuit X1. Therefore, it is necessary to put at least one character
that is invalid in parameter names in between the colon and the parameter. It is sufficient to use a space.

{(A==B)?C:D} ; this expression will generate a syntax error
{(A==B)?C :D} ; this expression is acceptable
{ (A==B)?C+0:D} ; this expression is acceptable
{(A==B)?(C):D} ; this expression is acceptable

Note that if using expressions without curly braces or single quotes (something that is allowed on . param
and .global_param lines) this becomes even more restrictive because the parser eats up whitespace. In
this case, the expression needs to be fixed another way, such as with parenthesis.

(A==B) ?C:D ; this expression will generate a syntax error
(A==B)?C :D ; parser eliminates whitespace, causing syntax error
(A==B) ?C+0:D ; this expression 1is acceptable

(A==B)?(C):D ; this expression is acceptable

162

Table 2-32. Arithmetic Functions

Function Meaning Explanation
Arithmetic functions

ABS(x) |x] absolute value of x

CEIL(x)] lea§t integer greater or equal to
variable x

DDT(x) %x(t) time derivative of x

Pl partial derivative of f(x) with

DDX(f(0),%) o/ (%) respect to x

FLOOR(x) Lx] gregtest integer less than or equal to
variable x

FMOD(x.y) returns the remainder of x/y as a
real number

TF(tx.y) xiftis true, t is an expression using the ,

y otherwise

relational operators in Table[2-31

INT(x) sgn(x) | |x]] integer part of the real variable x
LIMIT(x,y,z) yifx <y
xify<x<z x limited to range y to z
zifx >z
M(x) |x] absolute value or magnitude of x
MIN(x,y) min(x,y) minimum of x and y
MAX(x,y) max(x,y) maximum of x and y
NINT(x) fr(;tuer(lgc;i x up or down, to the nearest
PWR(x,y) x¥ x raised to y power
POW(x,y) xY x raised to y power
PWRS(x,y) xifx >0
0ifx=0 sign corrected x raised to y power
—(—x)ifx<0
SDT(x) S x(t)de time integral of x
SGN(x) +1ifx>0
Oifx=0 sign value of x
-lifx<0
SIGN(x,y) sgn(y)|x| sign of y times absolute value of x
STP(x) 1ifx>0 step function
0 otherwise
SQRT(x) VX square root of x
URAMP(x) xifx>0 ramp function

0 otherwise

163

Table 2-32. Arithmetic Functions

Function Meaning

Explanation

Operators related to interpolating tabular data

TABLE(x,y,2,*) f(x) where f(y) =z

piecewise linear interpolation,
multiple (y,z) pairs can be specified

TABLE(“filename”)

filename of x,y data pairs, one
pair per line, space separated, is
read from disk and put into a
TABLE for use as function lookup
table. Synonymous with
TABLEFILE.

FASTTABLE(x,y,z,*¥ (x) where f(y) =z

piecewise linear interpolation
without breakpoints, multiple (y,z)
pairs can be specified

FASTTABLE(“filename”)

filename of x,y data pairs, one
pair per line, space separated, is
read from disk and put into a
FASTTABLE for use as
breakpoint-free function lookup
table.

SPLINE(x,y,z,*) f(x) where f(y) =z

Akima spline interpolation,
multiple (y,z) pairs should be
specified

SPLINE(“filename”)

filename of x,y data pairs, one
pair per line, space separated, is
read from disk and put into a
SPLINE for use in an Akima
spline.

AKIMA(x,y,z,*¥) f(x) where f(y) =z

Akima spline interpolation [9]],
multiple (y,z) pairs should be
specified (synonymous with
SPLINE)

AKIMA(“filename”)

filename of x,y data pairs, one
pair per line, space separated, is
read from disk and put into a
AKIMA for use in an Akima spline.

CUBIC(x,y,z,*) f(x) where f(y) =z

Cubic spline interpolation, multiple
(,z) pairs should be specified

CUBIC(“filename”)

filename of x,y data pairs, one
pair per line, space separated, is
read from disk and put into a
CUBIC for use in an Cubic spline.

WODICKA(x,y,z,*) f(x) where f(y) =z

Wodicka spline interpolation [10]],
multiple (y,z) should be specified

164

Function

Table 2-32. Arithmetic Functions

Meaning

WODICKAC(*filename”)

Explanation

filename of x,y data pairs, one
pair per line, space separated, is
read from disk and put into a
WODICKA for use in a Wodicka
spline.

BLI(x,y,z,*)

f(x) where f(y) =z

Barycentric Lagrange
interpolation [[11], multiple (y,z)
pairs should be specified

BLI(“filename”)

filename of x,y data pairs, one
pair per line, space separated, is
read from disk and put into a BL.T
for use in Barycentric Lagrance
Interpolation.

TABLEFILE(“filename”)

filename of x,y data pairs, one
pair per line, space separated, is
read from disk and put into a
TABLE for use as function lookup
table.

Operators related to complex numbers

output the magnitude of x in

DB (%) decibels

IMG(x) imaginary part of variable x

PH(x) phase of variable x

R(x) real part of variable x

RE(x) real part of variable x
Exponential, logarithmic, and trigonometric functions

ACOS(x) arccos(x) result in radians

ACOSH(x) cosh™! (x) hyperbolic arccosine of x

ARCTAN(x) arctan(x) result in radians

ASIN(x) arcsin(x) result in radians

ASINH(x) sinh~! (x) hyperbolic arcsine of x

ATAN(x) arctan(x) result in radians

ATANH(x) tanh~! (x) hyperbolic arctangent of x

ATAN2(x,y) arctan(x/y) result in radians

COS(x) cos(x) x in radians

COSH(x) cosh(x) hyperbolic cosine of x

EXP(x) e’ e to the x power

LN(x) In(x) log base e

LOG(x) log(x) log base 10

LOG10(x) log(x) log base 10

165

Table 2-32. Arithmetic Functions

Function Meaning Explanation

SIN(x) sin(x) x in radians

SINH(x) sinh(x) hyperbolic sine of x
TAN(x) tan(x) x in radians

TANH(x) tanh(x) hyperbolic tangent of x

Operators related to random distributions

Random number sampled from
AGAUSS(u,o,n) normal distribution with mean u
and standard deviation a/n

A deviation o will be n standard
deviations from the mean.!

Random number sampled from
GAUSS(u,o,n) normal distribution with mean p
and standard deviation (o x it)/n

A deviation o * 1 will be n standard
deviations from the mean.!

Random number sampled from
AUNIF(u,00) uniform distribution with mean
and standard deviation o/ /n

The number returned will differ
from the mean by at most o !

Random number sampled from
UNIF(u,o) uniform distribution with mean
and standard deviation (o x) /n

The number returned will differ
from the mean by at most o * !

random number between 0 and 1
RAND() sampled from a uniform
distribution!

Arithmetic Functions

'The default behavior of the random number functions RAND, GAUSS, and AGAUSS, if there are not any UQ commands such
as . SAMPLING in the netlist, is to return the mean value of the operator. If a UQ command is present, then these operators
can be used to define the distribution of random inputs to the UQ analysis. However, this will only happen if the UQ analysis
specifically requests it using the command . SAMPLING USEEXPR=TRUE Unless a specific random seed is specified using
either the —~randseed command line option, or from the netlist, the random number generator will be seeded internally. In all
cases, Xyce will output text to the console indicating what seed is being used.

2Use of the IF function to create an expression that has step-function-like behavior as a function of a solution variable is highly
likely to produce convergence errors in simulation. IF statements that have step-like behavior with an explicit time dependence
are the exception, as the code will insert breakpoints at the discontinuities. Do not use step-function or other infinite-slope
transitions dependent on variables other than time. Smooth the transition so that it is more easily integrated through. See the
“Analog Behavioral Modeling” chapter of the Xyce Users” Guide [1] for guidance on using the IF function with the B-source
device.

166

Table 2-33. SPICE Compatibility Functions

SPICE_EXP(V1,V2, TD1,TAU1,TD2,TAU2) SPICE style transient exponential

V1 = initial value

V2 = pulsed value

TDI1 =rise delay time

TAU1 = rise time constant

TD2 = fall delay time

TAU2 = fall time constant
SPICE_PULSE(V1,V2,TD,TR,TFEPW,PER) SPICE style transient pulse

V1 = initial value

V2 = pulsed value

TD = delay

TR = rise time

TF = fall time

PW = pulse width

PER = period
SPICE_SFFM(VO0,VA,FC,MDILES) SPICE style transient single frequency FM

VO = offset

VA = amplitude

FC = carrier frequency

MDI = modulation index

FS = signal frequency
SPICE_SIN(VO0,VA,FREQ,TD,THETA) SPICE style transient sine wave

V0 = offset

VA = amplitude

FREQ = frequency (hz)

TD = delay

THETA = damping factor

Spice Compatable Functions Information about the restrictions on expressions in specific contexts
is given in the subsections that follow.

2.2.1. Expressions in . PARAM or . GLOBAL_ PARAM Statements

Parameters defined using . PARAM and . GLOBAL_PARAM are mostly synonymous and subject to most of
the same constraints. Both types are allowed to depend on parameters defined in . PARAM or
.GLOBAL_PARAM statements, and both may contain special variables such as TIME, FREQ, TEMP or
VT. Neither type may contain any references to solution variables or lead currents.

167

Example: .PARAM SQUARES=5.0

Example: .PARAM SHEETRES=25

Example: .PARAM RESISTANCE={SQUARES*SHEETRES}
Example: .PARAM dTdt=.01

Example: .GLOBAL_PARAM Temperature={27+dTdt*TIME }

Both types of parameter are subject to extra constraints if used inside of subcircuits. . PARAM parameters
may be defined inside of a subcircuit, while . GLOBAL_PARAM parameters may not. Parameters inside of
subcircuits may not be swept by analysis commands such as . STEP or . SAMPLING. Only globally
scoped user-defined parameters can be swept in this manner. Note, this restriction does not apply to device
parameters, just user-defined parameters.

2.2.2. Expressions in . PRINT Lines

Expressions on . PRINT lines may contain references to parameters defined in either . PARAM or
.GLOBAL_PARAM statements, device parameters using the syntax <device name>:<parameter
name>, and may also contain solution variables.

sexample with .print expressions

.PARAM RES=50

Rl 1 0 {RES}

V1l 1 0 sin(0 5 100khz)

.tran 1u 1m

*Print power dissipated through resistor,
*and actual resistance used in the R1

+*device
.print tran {V(1)=*V(1l)/RES} {R1:R}
.end

2.2.3. Limitations on Using Complex Values in Expressions

The Xyce expression library was written to work with complex quantities, and can perform complex
arithmetic on any set of complex inputs to produce a complex output. However, the default behavior is to
print only the real part for expressions on the print line. If the user desires both the real and imaginary part,
it is necessary to use operators such as Re () and Img () as follows:

.PRINT AC ({RE(V(NO,N1))} {IMG(V(NO,N1))}

Note that this is only necessary to obtain the specific components final result. It isn’t necessary to manually
specify real equivalent arithmetic expressions to do complex math, although that will work. Complex
arithmetic will happen automatically within the expression. So, for example, the following will work to
produce the magnitude of the product of two complex-valued voltage nodes:

168

.PRINT AC {M(V(N1)=xV(NO))}

2.2.4. Expressions for Device Instance and Model Parameters

Expressions of constants, . PARAM and . GLOBAL_PARAM parameters may be used for the values of any
device parameters in instance and model lines.

Except in very specific devices, expressions used for device parameter values must evaluate to a
time-independent constant, and must not contain dependence on solution variables such as nodal voltages
or currents.

rexample of use of expressions for device parameters
.PARAM RES=50

.GLOBAL_PARAM theSaturationCurrent=1.5e-14

Rl1 1 0 {RES}

Vvl 1l 0 sin(0 5 100khz)

D1 1 0 DMODEL

.MODEL D DMODEL IS=theSaturationCurrent

.step theSaturationCurrent le-14 5e-14 le-14

Some parameters of specific devices are exceptions to the general rule. These parameters have no
restrictions and may depend on any parameters, time, or solution variables in the netlist:

* The V or I instance parameters of the B source.

The CONTROL instance parameter of the switch (S device).

* The C (capacitance) instance parameter for the capacitor.

The Q (charge) instance parameter for the capacitor.

* The coupling coefficient instance parameter for the LINEAR mutual inductor (K device with no
model card specified)

These specific instance parameters may be time-depdendent (i.e. they may reference the T IME special
variable), but may not depend on any solution variables:

The TEMP instance parameter of all devices.

The L (inductance) parameter of the inductor.

* The R (resistance) parameter of the resistor.

The R, RESISTIVITY, DENSITY, HEATCAPACITY and THERMAL_HEATCAPACITY
parameters of the thermal resistor (resistor level 2).

169

2.2.5. POLY expressions

The POLY keyword is available in the E, F, G, H and B dependent sources. Based on the same keyword
from SPICE2, POLY provides a compact method of specifying polynomial expressions in which the
variables in the polynomial are specified followed by an ordered list of polynomial coefficients. All
expressions specified with POLY are ultimately translated by Xyce into an equivalent, straightforward
polynomial expression in a B source. Since a straightforward polynomial expression can be easier to read,
there is no real benefit to using POLY except to support netlists imported from other SPICE-based
simulators.

There are three different syntax forms for POLY, which can be a source of confusion. The E and G sources
(voltage-dependent voltage or current sources) use one form, the F and H sources (current-dependent
voltage or current sources) use a second form, and the B source (general nonlinear source) a third form.
During input processing, any of the E, F, G or H sources that use nonlinear expressions are first converted
into an equivalent B source, and then any B sources that use the POLY shorthand are further converted into
standard polynomial expressions. This section describes how the compact form will be translated into the
final form that is used internally.

All three formats of POLY express the same three components: a number of variables involved in the
expression (N, the number in parentheses after the POLY keyword), the variables themselves, and an
ordered list of coefficients for the polynomial terms. Where they differ is in how the variables are
expressed.

2.25.1. Voltage-controlled sources

The E and G sources are both voltage-controlled, and so their POLY format requires specification of two
nodes for each voltage on which the source depends, i.e. the positive and negative nodes from which a
voltage drop is computed. There must therefore be twice as many nodes as the number of variables
specified in parentheses after the POLY keyword:

Epoly 1 2 POLY(3) nlp nlm n2p n2m n3p n3m

In this example, the voltage between nodes 1 and 2 is determined by a polynomial whose variables are
V(nlp,nlm),V(n2p,n2m),V (n3p, n3m). Not shown in this example are the polynomial
coefficients, which will be described later.

2.2.5.2. Current-controlled sources

The F and H sources are both current-controlled, and so their POLY format requires specification of one
voltage source name for each current on which the source depends. There must therefore be exactly as
many nodes as the number of variables specified in parentheses after the POLY keyword:

Fpoly 1 2 POLY(3) V1 V2 V3

In this example, the voltage between nodes 1 and 2 is determined by a polynomial whose variables are
I(V1),I(V2),and I (V3).Notshown in thisexample are the polynomial coefficients, which will be
described later.

170

2.2.5.3. B sources

Finally, the most general form of POLY is that used in the general nonlinear dependent source, the B
source. In this variant, each specific variable must be named explicitly (i.e. not simply by node name or by
voltage source name), because currents and voltages may be mixed as needed.

Bpoly 1 2 V={POLY(3) I(V1) V(2,3) V(3) ...}
Bpoly2 1 2 I={POLY(3) I (V1) V(2,3) V(3) ...}

In these examples, the source between nodes 1 and 2 is determined by a polynomial whose variables are
I(V1),V(2,3),andV (3). In the first example, the polynomial value determines the voltage between
nodes 1 and 2, and in the second the current.

The E, F, Gand H formats are all converted internally in a first step to the B format. Thus the following
pairs of sources are exactly equivalent:

Epoly 1 2 POLY(3) nlp nlm n2p n2m n3p n3m

BEpoly 1 2 V={POLY(3) V(nlp,nlm) V(n2p,n2m) V(n3p,n3m)
Fpoly 1 2 POLY(3) V1 V2 V3

BFpoly 1 2 V={POLY(3) I (V1) I(V2) I(V3)

After conversion to the B source form, the POLY form is finally converted to a normal expression using the
coefficients and variables given.

Coefficients are given in a standard order, and the polynomial is built up by terms until the list of
coefficients is exhausted. The first coefficient is the constant term of the polynomial, followed by the
coefficients of linear terms, then bi-linear, and so on. For example:

Epoly 1 2 POLY(3) nlp nlm n2p n2m n3p n3m 1 .5 .5 .5

In this example, the constant term is 1.0, and the coefficients of the three terms linear in the input variables
are 0.5. Thus, this E source is precisely equivalent to the general B source:

BEstandard 1 2 v={1.0 + .5xV(nlp,nlm) + .5V (n2p,n2m) +.5«V(n3p,n3m) }
The standard ordering for coefficients is:
POLY(N) X;...XyCo C1...Cy C11...Cin Ca1...Cy1...Cyn Cr2y .. .Cr2y - ..

with the polynomial then being:

N N
ZZC12]X12X1+
1

N N N
Value=Co+ Y. C;X;+ Y Y CijXiX;+
j=1 1 i=1 j=

i=1j=

Here we have used the general form X; for the i variable, which may be either a current or voltage
variable in the general case.

It should be reiterated that the POLY format is provided primarily for support of netlists from other
simulators, and that its compactness may be a disadvantage in readability of the netlist and may be more
prone to usage error. Xyce users are therefore advised that use of the more straightforward expression
format in the B source may be more appropriate when crafting original netlists for use in Xyce. Since Xyce

171

converts POLY format expressions to the simpler format internally, there is no performance benefit to use
of POLY.

172

2.3. Devices

Xyce supports many devices, with an emphasis on analog devices, including sources, subcircuits and
behavioral models. This section serves as a reference for the devices supported by Xyce. Each device is
described separately and includes the following information, if applicable:

* adescription and an example of the correct netlist syntax.

* the matching model types and their description.

* the matching list of model parameters and associated descriptions.

* the corresponding characteristic equations for the model (as required).
* references to publications on which the model is based.

User-defined models may be implemented using the .MODEL (model definition) statement, and
macromodels can be created as subcircuits using the . SUBCKT (subcircuit) statement.

Please note that the characteristic equations are provided to give a general representation of the device
behavior. The actual Xyce implementation of the device may be slightly different in order to improve, for
example, the robustness of the device.

Table 2-34] gives a summary of the device types and the form of their netlist formats. Each of these is
described below in detail.

Table 2-34. Analog Device Quick Reference.

Device Type Letter

Typical Netlist Format

Nonlinear Dependent B<name> <+ node> <- node>

B .
Source (B Source) + <I or V>={<expression>}
. C<name> <+ node> <- node> [model name] <value>
Capacitor C s
+ [IC=<initial value>]
. D<name> <anode node> <cathode node>
Diode D
+ <model name> [area value]
Voltage Controlled Voltage - E<name> <+ node> <- node> <+ controlling node>
Source + <- controlling node> <gain>
Current Controlled - F<name> <+ node> <- node>
Current Source + <controlling V device name> <gain>
Voltage Controlled G G<name> <+ node> <- node> <+ controlling node>
Current Source + <- controlling node> <transconductance>
Current Controlled . H<name> <+ node> <- node>
Voltage Source + <controlling V device name> <gain>
I<name> <+ node> <- node> DC] <value>
Independent Current : e)
Source I + [AC [magnitude value [phase value]]]
+ [transient specification]
K<name> <inductor 1> [<ind. n>x*
Mutual Inductor K . . []
+ <linear coupling or model>
L<name> <+ node> <- node> [model name] <value>
Inductor L

+ [IC=<initial value>]

173

Table 2-34. Analog Device Quick Reference.
Device Type Letter Typical Netlist Format

J<name> <drain node> <gate node> <source node>

JFET J
+ <model name> [area value]

M<name> <drain node> <gate node> <source node>
MOSFET M + <bulk/substrate node> [SOI node(s)]
+ <model name> [common model parameter]x

O<name> <A port (+) node> <A port (-) node>
0 + <B port (+) node> <B port (-) node>
+ <model name>

Lossy Transmission Line
(LTRA)

Q<name> <collector node> <base node>
0 + <emitter node> [substrate node]
+ <model name> [area value]

Bipolar Junction
Transistor (BJT)

R<name> <+ node> <- node> [model name] <value>

Resi R
esistor + [L=<length>] [W=<width>]

S<name> <+ switch node> <- switch node>
Voltage Controlled Switch S + <+ controlling node> <- controlling node>
+ <model name>

S<name> <+ switch node> <- switch node>

Generic Switch S .
+ <model name> CONTROL=\{expression\}
T<name> <A port + node> <A port - node>
Transmission Line T + <B port + node> <B port — node>
+ <ideal specification>
.. . U<name> <type> <digital power node>
Digital Devices U .. yp 9t bow
+ <digital ground node> [node]* <model name>
V<name> <+ node> <- node> [[DC] <value>]
Independent Voltage :
Source v + [AC [magnitude value [phase value]]]
+ [transient specification]
P<name> <+ node> <- node> [[DC] <value>]
Port Device b + port=port.number [Z20 = value]
+ [AC [magnitude value [phase value]] 1
+ [transient specification]
.. X<name> [node]* <subcircuit name>
Subcircuit X

+ [PARAMS: [<name>=<value>] *]

W<name> <+ switch node> <- switch node>

Current Controlled Switch W) i
+ <controlling V device name> <model name>

Digital Devices, Y Type

Y<type> Y<type> <name> [node]* <model name>

(deprecated) yp yp :]
PDE Devices YPDE YPDE <name> [node]* <model name>

YACC <name> <acceleration> <velocity> <position>
Accelerated masses YACC L. L. * v , 1y post l

+ [x0=<initial position>] [v0=<initial velocity>]
Linear Device YLIN YLIN <name> <+ node> <- node> <model name>
Memristor Device YMEMRISTOR YMEMRISTOR <name> <+ node> <- node> <model name>

Z<name> <drain node> <gate node> <source node>
MESFET 7 * g “

+ <model name> [area value]

174

Table 2-35. Features Supported by Xyce Device Models

Device Comments Branch Analy.tlc .
Power Sensi- | Stationary
Current .. .
tivity Noise
Capacitor Age-aware, semiconductor
Y Y Y
Inductor Coupled mutual inductors (see below)
Y Y Y
Linear and Nonlinear Mutual
Inductor Y Y
Resistor (Level 1) Normal and Semiconductor
Y Y Y Y
Resistor (Level 2) Thermal Resistor
Y Y
Diode (Level 1)
Y Y Y Y
Diode (Level 2) Addition of PSpice enhancements
Y Y
Diode (Level 200) JUNCAP200 model
Y Y Y Y
Independent Voltage Source
(VSRCO) Y Y Y
Independent Current Source
(ISRC) Y Y Y
Voltage Controlled Voltage
Source (VCVS) % Y
Voltage Controlled Current
Source (VCCS) % %
Current Controlled Voltage
Source (CCVS) % %
Current Controlled Current
Source (CCCS) % Y
Port Device
Y Y
Nonlinear Dependent Source
(B Source) % %

175

Table 2-35. Features Supported by Xyce Device Models

Device Comments Analytic
Power Sensi- | Stationary

tivity Noise

Branch
Current

Bipolar Junction Transistor
(BJT) (Level 1) % Y % %
Bipolar Junction Transistor Vertical Bipolar Intercompany (VBIC)
(BJT) (Level 11) model, version 1.3 (3-terminal) % % % %
Bipolar Junction Transistor Vertical Bipolar Intercompany (VBIC)
(BJT) (Level 12) model, version 1.3 (4-terminal) % % % %
Binolar Junction Transistor FBH (Ferdinand-Braun-Institut fiir
(BIJ)T) (Level 23) Hochstfrequenztechnik) HBT model,
eve version 2.1 Y Y Y N

Bipolar Junction Transistor
(BIT) (Level 230) HICUM Level 0 v N v N
Bipolar Junction Transistor
(BJT) (Level 234) HICUM Level 2 Y Y Y Y
Bipolar Junction Transistor MEXTRAM version 504.12.1
(BJT) (Level 504) Y Y Y Y
Bipolar Junction Transistor MEXTRAM version 504.12.1 (with
(BIT) (Level 505) self-heating) % % % %
Junction Field Effect Transistor .
(JFET) (Level 1) SPICE-compatible JFET model v v
Junction Field Effect Transistor
(JFET) (Level 2) Shockley JFET model v N
MESFET

Y Y
MOSFET (Level 1)

Y Y Y
MOSFET (Level 2) SPICE level 2 MOSFET

Y Y Y
MOSFET (Level 3)

Y Y Y
MOSFET (Level 6) SPICE level 6 MOSFET

Y Y Y
MOSFET (Level 9) BSIM3 model

Y Y Y Y

176

Table 2-35. Features Supported by Xyce Device Models

Device Comments Branch Analy.tlc .
Power Sensi- | Stationary
Current .. c
tivity Noise

MOSFET (Level 10) BSIM SOI model

Y Y
MOSFET (Level 14 or 54) BSIM4 model

Y Y
MOSFET (Level 18) VDMOS general model

Y Y
MOSFET (Level 77) BSIM6 model version 6.1.1

Y Y Y Y
MOSFET (Level 102) Legacy PSP model

Y Y Y Y
MOSFET (Level 103) PSP model

Y Y Y Y
MOSFET (Level 107) BSIM-CMG version 107.0.0

Y Y Y Y
MOSFET (Level 110) BSIM-CMG version 110.0.0

Y Y Y Y
MOSFET (Level 301) EKYV model version 3.0.1

Y Y Y Y
MOSEFET (Level 2000) MVS ETSOI model version 2.0.0

Y Y Y Y
MOSFET (Level 2001) MVS HEMT model version 2.0.0

Y Y Y Y
Transmission Line (TRA) Lossless

Y Y
Transmission Line (LTRA) Lossy
Lumped Transmission Line Lossy or Lossless
Controlled Switch (S,W)
(VSWITCH/ISWITCH) Voltage or current controlled v v
Generic Switch (SW) Controlled by an expression

Y Y

177

Table 2-35. Features Supported by Xyce Device Models

Device Comments Branch Analy.tlc .
Power Sensi- | Stationary
Current . . .
tivity Noise
PDE Devices (Level 1) one-dimensional
Y
PDE Devices (Level 2) two-dimensional
Y
Digital (Level 1) Behavioral Digital
NA NA
Accelerated mass device, used for
ACC simulation of electromechanical and
magnetically-driven machines NA NA
Separate models for Branch, Bus
Power Grid Shunt, Transformer and Generator
Bus. The Generator Bus model
supports reactive power (Q) limiting
Memristor TEAM formulation
Y Y
Memristor Yakopcic
Y Y
Memristor PEM Formulation
Y Y

178

2.3.1. Voltage Nodes

Devices in a netlist are connected between nodes, and all device types in Xyce require at least two nodes on
each instance line. Section [2.3.2]lists the characters that are legal and illegal in Xyce node and device
names.

Except for global nodes (below), voltage node names appearing in a subcircuit that are not listed in the
subcircuit’s argument list are accessible only to that subcircuit; devices outside the subcircuit cannot
connect to local nodes.

2.3.1.1. Global nodes

A special syntax is used to designate certain nodes as global nodes. Any node whose name starts with the
two characters “$G” is a global node, and such nodes are available to be used in any subcircuit. A typical
usage of such global nodes is to define a VDD or VSS signal that all subcircuits need to be able to access,

but without having to provide VSS and VDD input nodes to every subcircuit. In this case, a global $GVDD
node would be use for the VDD signal.

The node named 0 is a special global node. Node 0 is always ground, and is accessible to all levels of a
hierarchical netlist.

For compatibility with HSPICE, the . GLOBAL command can be used to define global nodes that do not
start with the two characters “$G”. See section 2.1.1 1| for more details.

2.3.1.2. Subcircuit Nodes

Hierarchical netlists may be created using . SUBCKT [2.1.37]] to define common subcircuit types, and X
[2.3.33] lines to create instances of those subcircuits. There are two types of nodes associated with such
subcircuits, interface nodes and internal nodes.

Interface nodes are the nodes named on the . SUBCKT line. These are effectively local aliases internal to
the subcircuit definition for the node names used on the X instance lines. Internal nodes are nodes inside the
subcircuit definition that are strictly local to that subcircuit. Inside a subcircuit, these node names may be
used without restriction in device instance lines and expressions on B source lines.

There are some circumstances when it is desirable to access internal nodes of a subcircuit from outside that
subcircuit. Xyce provides a syntax that allows this to be done in some contexts. The primary context in
which this is supported is on . PRINT lines, to allow the user to print out signals that are usually local to a
subcircuit.

The syntax used by Xyce to refer to nodes within a subcircuit is to prefix the name of the node with the full
path of subcircuit instances in which the node is contained, with colons (:) separating the instance names.
So, to reference a node “A” that is inside a subcircuit instance called “Xnot1” inside another subcircuit
instance called “Xmain”, one would refer to “Xmain:Xnot1:A”

The same syntax works on . PRINT lines even if the subcircuit node is one of the interface nodes on the
. SUBCKT line, but those nodes can also be accessed by using the names of the nodes at the higher level of
circuit hierarchy that are used on its instance line.

179

* Netlist file demonstrating subcircuit node access
vl 1 0 1

X1 1 2 demosubc

X2 2 0 demosubc

.subckt demosubc A B

Rl AC1

R2 C B 1

.ends

.dc V1 1 51

*V(X1:A) and V(1) are the same signal.
*V(X1:C) 1s the internal C node of the X1 instance
*V(X2:C) is the internal C node of the X2 instance

*V(X1:B), V(X2:A) and V(2) are the same signal
.print DC V(X1:C) V(X2:C) V(X1:A) V(1) V(X1:B) V(X2: V(2)
.end

Subcircuit nodes may also be accessed from outside of the subcircuit in B source voltage or current
expressions, though this usage violates the strict hierarchy of the netlist. The one difference between this
usage and . PRINT usage is that it is not possible to use the subcircuit node syntax to access interface
nodes. These must be accessed using the node names being used on the instance line, as in the “V(1)”
example in the netlist fragment above.

2.3.2. Legal Characters in Node and Device Names

Xyce node names and device names can consist of any printable ASCII characters, with the following
exceptions and caveats which may be different than other SPICE-like circuit simulators. The exceptions
are:

» White space (space, tab, newline) is not allowed.

* Parentheses (“(” or)”), braces (“{” or ““}””), commas, colons, semi-colons, double quotes and single
quotes are also not allowed, since they do not work correctly in node names or device names in all
netlist contexts in Xyce.

The caveats are as follows:

* The star (*) and question mark (?) characters are allowed in both node names and device names.
However, those two characters also function as “print wildcards” in Xyce, per section|2.1.31.11] So,
that usage is discouraged.

* Global nodes in Xyce begin with the two characters “$G”.
* The node named 0 (“zero”) is a special global node, which is always the ground node.

* These arithmetic operators $ ~ & ? : ~ » —+ <> / | should not be used in node or device names
that will be used outside of a Xyce “operator”, such as V (), within a Xyce expresson. Examples of
this caveat are given below.

180

¢ The # character should not be used as the first character of a node name that will be used within an
expression. Examples of this caveat are also given below.

These are some examples of the caveats of the use of arithmetic operators and # character within
expressions:

* Okay since the + in the node name is enclosed within the V() operator.
.PRINT TRAN {V(1+) — V(+)}

* Okay since the R+ and R- device names are enclosed within the I () operator.
.PRINT TRAN {I(R+) * I(R-)}

* Okay, for printing the resistance wvalue, since the R-1 device name

* 1s not used in an expression.

.PRINT TRAN R-1:R

* Will produce a parsing error, since the R-1 device name is used outside

* of an operator. That makes this statement ambiguous within an expression.
.PRINT TRAN {R-1:R}

* These uses of # are okay.

.PRINT TRAN V (#) {V(1#) -1}

* These usages of # are parsing errors, since # is the first character

* in the node names.

.PRINT TRAN {V(#) - 2} {V(#1) -1}

2.3.3. Lead Currents and Power Calculations

For some devices, such as independent voltage and current sources, the current through that device is a
“solution” variable. For other devices, the current through the device is a “lead current”, whose value is
calculated during a post-processing step. This approach has ramifications in Xyce for the availability and
accuracy of lead current values. In particular, both lead currents and power calculations need to have been
explicitly enabled for a given device, analysis type (e.g., . AC) or netlist command (e.g., . MEASURE).

For voltage sources, both V and I are solution variables. So, their accuracy is more likely to be limited by
the nonlinear solver tolerances (RELTOL and ABSTOL). The lead current accuracy, for a device like the
resistor, can also be limited by the right-hand side tolerance RHSTOL. So, the calculated lead currents
through very small resistances (e.g., 1e-12) may be inaccurate if the default solver tolerances for Xyce are
used.

Lead currents have the following additional limitations:
* They are not enabled for . AC analyses.
* They are not allowed in the expression controlling a B-Source.
* They do not work for . RESULT statements.
Lead currents and power calculations are available in . MEASURE and . FOUR statements.

At this time the power calculations are only supported for .DC and . TRAN analysis types and for a limited
set of devices. In addition, the results for semiconductor devices (D, J, M, Q and Z devices) and the lossless
transmission device (T device) may differ from other simulators. Consult the Features Supported by Xyce
Device Models table in section 2.3 and the individual sections on each device for more details.

181

As an example, the power supplied or dissipated by the voltage source V is calculated as I - AV where the
voltage drop is calculated as (V;. — V_) and positive current flows from V. to V_. Dissipated power has a
positive sign, while supplied power has a negative sign.

An important note is that the power calculations are also a post-processing step, which places a limit on the
accuracy of circuit-wide “energy conservation” calculations (e.g., total power supplied by sources - total
power dissipated in non-source devices) in Xyce. The accuracy of the inputs (V and I) to the power
calculations is limited by the nonlinear solver and right-hand side tolerances, as noted above, and the error
in the power calculations is upper-bounded by the sum of the product-terms of V« (error in I) and
Ix(error in V).

182

2.3.4. Capacitor

Symbol

—

Instance Form

C<device name> <(+) node> <(-) node> [model name] [value]
+ [device parameters]

Model Form .MODEL <model name> C [model parameters]
.MODEL <model name> CAP [model parameters]
Examples CM12 2 4 5.288e-13

CLOAD 1 0 4.540pF IC=1.5V

CFEEDBACK 2 0 CMOD 1.0pF

CAGED 2 3 4.0uF D=0.0233 AGE=86200

CSOLDEP 3 0 C={cax* (cO+cl*xtanh ((V(3,0)-v0)/vl1l))}

CSOLDEPQ 3 0 Q={cax* (clxvlxln(cosh((v(3,0)-v0)/vl))+c0*v(3,0))}

Parameters and
Options

device name
The name of the device.

(+) node

(=) node
Polarity definition for a positive voltage across the capacitor. The first node
is defined as positive. Therefore, the voltage across the component is the first
node voltage minus the second node voltage.

model name
If model name is omitted, then value is the capacitance in farads. If
[model name] is given then the value is determined from the model
parameters; see the capacitor value formula below.

value
Positional specification of device parameter C (capacitance). Alternately, this
can be specified as a parameter, C=<value>, or in the (optional) model.

device parameters
Parameters listed in Table [2-36{may be provided as space separated
<parameter>=<value> specifications as needed. Any number of
parameters may be specified.

model parameters
Parameters listed in Table [2-37|may be provided as space separated
<parameter>=<value> specifications as needed. Any number of
parameters may be specified.

183

Comments Positive current flows through the capacitor from the (+) node to the (—) node. In
general, capacitors should have a positive capacitance value (<value> property). In
all cases, the capacitance must not be zero.

However, cases exist when a negative capacitance value may be used. This occurs
most often in filter designs that analyze an RLC circuit equivalent to a real circuit.
When transforming from the real to the RLC equivalent, the result may contain a
negative capacitance value.

In a transient run, negative capacitance values may cause the simulation to fail due to
instabilities they cause in the time integration algorithms.

The power stored or released from the capacitor is calculated with /- AV where the
voltage drop is calculated as (V4 — V_) and positive current flows from V. to V_.

For compatibility with PSpice, either C or CAP can be used in a . MODEL statement
for a capacitor.

The Multiplicity Factor (M) can be used to specify multiple, identical capacitors in
parallel. The effective capacitance becomes C*M. The M value need not be an integer.
It can be any positive real number. M can not be used as a model parameter.

Table 2-36. Capacitor Device Instance Parameters

Parameter Description Units Default

AGE Age of capacitor hour 0

C Capacitance F le-06

D Age degradation coefficient - 0.0233

IC Initial voltage drop across device v 0
Semiconductor capacitor width m 1
Multiplicity Factor - 1

0 Charge C 0

TC1 Linear Temperature Coefficient °c! 0

TC2 Quadratic Temperature Coefficient °C—2 0

TEMP Device temperature °C ’?;?r:);:gture

W Semiconductor capacitor length m le-06

Device Parameters In addition to the parameters shown in the table, the capacitor supports a vector
parameter for the temperature correction coefficients. TC1=<linear coefficient> and
TC2=<quadratic coefficient> may therefore be specified compactly as TC=<linear
coefficient>,<quadratic coefficient>.

184

Table 2-37. Capacitor Device Model Parameters

Parameter Description Units Default

C Capacitance multiplier - 1

cJ Junction bottom capacitance F/m? 0

CJIsw Junction sidewall capacitance F/m 0

DEFW Default device width m le-06
NARROW Narrowing due to side etching m 0

TC1l Linear temperature coefficient ec~! 0

TC2 Quadratic temperature coefficient °Cc—? 0

TNOM Nominal device temperature °C ?griizgture

Model Parameters

Capacitor Equations

Capacitance Value Formula If [model name] is specified, then the capacitance is given by:

C-(1+TC1-(T —Ty) +TC2- (T — Tp)?)

where C is the base capacitance specified on the device line and is normally positive (though it can be
negative, but not zero). Ty is the nominal temperature (set using TNOM option).

Age-aware Formula If AGE is given, then the capacitance is:

Semiconductor Formula If [model name] and L and W are given, then the capacitance is:

C[1 —Dlog(AGE)]

CJ(L—NARROW)(W — NARROW) +2 - CJSW(L — W +2-NARROW)

Solution-Dependent Capacitor If the capacitance (C) is set equal to an expression then a
“solution-dependent” capacitor is used, where the capacitance is a function of other simulation variables.
The formulas for temperature-dependence and age-dependence, given above, then use that calculated C

value.

If the parameter Q is set equal to an expression instead of specifying a capacitance, this expression is used
to evaluate the charge on the capacitor instead of computing it from capacitance. Temperature and age

dependence are not computed in this case, as these effects are applied by modifying the capacitance.

Both solution-dependent charge and capacitance formulations are implemented to assure charge

conservation. The capacitor:

185

c_mcap 1 2 g={cax(clxvlixln(cosh((v(1l,2)-v0)/vl))+cOxv(1l,2))}
is exactly equivalent to the capacitor
c_mcap 1 2 c={cax (cO+cl+tanh((V(1l,2)-v0)/vl))}

because the capacitance is the derivative of the charge with respect to the voltage drop across the capacitor.
Similarly, both are equivalent to the behavioral source:

BC 1 2 I=ddt(V(1l,2))*(ca*(cO+cl+stanh ((V(1l,2)-v0)/vl)))

because I =dQ/dt =dQ/dV xdV /dt = CxdV /dt.
The restrictions for this formulation are:

* The expression used for C or Q must only use solution variables, which are node voltages and also
branch currents for source devices. It may not use device lead currents, which are post-processed
quantities that are not solution variables.

* The expression must not use time derivatives.

* Capacitance (C) and Charge (Q) are the only instance or model parameters that are allowed to be
solution-dependent.

Other Restrictions and Caveats A netlist parsing error will occur if:
* Neither the C, Q, nor L instance parameters are specified.
* Both C and Q are specified as expressions.
* Qs specified in addition to an IC=.

* The A instance parameter is specified for a semiconductor capacitor (which is specified via L, W and
CJISW).

If both the C and L instance parameters are specified then C will be used, rather than the semiconductor
formulation.

Special note on Initial Conditions: The IC parameter of the capacitor may be used to specify an
initial voltage drop on the capacitor. Unlike SPICE3FS5, this parameter is never ignored (SPICE3F5 only
respects it if UIC is used on a transient line). The initial condition is applied differently depending on the
analysis specified.

If one is doing a transient with DC operating point calculation or a DC operating point analysis, the initial
condition is applied by inserting a voltage source across the capacitor to force the operating point to find a
solution with the capacitor charged to the specific voltage. The resulting operating point will be one that is
consistent with the capacitor having the given voltage in steady state.

If one specifies UIC or NOOP on the . TRAN line, then Xyce does not perform an operating point
calculation, but rather begins a transient simulation directly given an initial state for the solution. In this
case, IC initial conditions are applied only for the first iteration of the Newton solve of the first time step

186

— the capacitor uses the initial condition to compute its charge, and the nonlinear solver will therefore find
a solution to the circuit problem consistent with this charge, i.e., one with the correct voltage drop across
the capacitor.

The caveats of this section apply only to initial conditions specified via IC= parameters on the capacitor,
and do not affect how initial conditions are applied when using . IC lines to specify initial conditions on
node values.

The three different ways of specifying initial conditions can lead to different circuit behaviors. Notably,
when applying initial conditions during a DC operating point with IC= on the capacitor line, the resulting
operating point will be a DC solution with currents everywhere consistent with there being a constant
charge on the capacitor, whereas in general a transient run from an initial condition without having
performed an operating point calculation will have a quiescent circuit at the first timestep.

187

2.3.5. Inductor

Symbol — Y Y

Instance Form L<name> < (+) node> <(-) node> [model] <value> [device
parameters]

Model Form .MODEL <model name> L [model parameters]
.MODEL <model name> IND [model parameters]

Examples L1 1 5 3.718e-08

LM 7 8 L=5e-3 M=2

LLOAD 3 6 4.540mH IC=2mA

Lmodded 3 6 indmod 4.540mH

.model indmod L (L=.5 TC1=0.010 TC2=0.0094)

Parameters and
Options (+) node
(=) node
Polarity definition for a positive voltage across the inductor. The first node is
defined as positive. Therefore, the voltage across the component is the first
node voltage minus the second node voltage.

initial value
The initial current through the inductor during the bias point calculation.

Comments In general, inductors should have a positive inductance value. The inductance must
not be zero. Also, a netlist parsing error will occur if no value is specified for the
inductance.

However, cases exist when a negative value may be used. This occurs most often in
filter designs that analyze an RLC circuit equivalent to a real circuit. When
transforming from the real to the RLC equivalent, the result may contain a negative
inductance value.

The power stored or released from the inductor is calculated with /- AV where the
voltage drop is calculated as (V4 — V_) and positive current flows from V. to V_.

If a model name is given, the inductance is modified from the value given on the
instance line by the parameters in the model card. See “Inductance Value Formula”
below.

When an inductor is named in the list of coupled inductors in a mutual inductor device
line (see page|191) , and that mutual inductor is of the nonlinear-core type, the
<value> is interpreted as a number of turns rather than as an inductance in Henries.

For compatibility with PSpice, either I or IND can be used in a . MODEL statement
for an inductor.

188

The Multiplicity Factor (M) can be used to specify multiple, identical inductors in
parallel. The effective inductance becomes L/M. However, the value for the IC
instance parameter is not multiplied by the M value. The M value need not be an
integer. It can be any positive real number. M can not be used as a model parameter.

189

Table 2-38. Inductor Device Instance Parameters

Parameter Description Units Default

IC Initial current through device A 0

L Inductance henry 0

M Multiplicity Factor - 1

TC1 Linear Temperature Coefficient oc~! 0

TC2 Quadratic Temperature Coefficient °C—2 0

TEMP Device temperature °C '?emrr?;:gture

Device Parameters

Table 2-39. Inductor Device Model Parameters

Parameter Description Units Default
IC Initial current through device A 0

L Inductance Multiplier - 1

IC1 First order temperature coeff. oc! 0

TC2 Second order temperature coeff. °C—2 0

TNOM Reference temperature °C 27

Model Parameters In addition to the parameters shown in the table, the inductor supports a vector
parameter for the temperature correction coefficients. TC1=<linear coefficient> and
TC2=<quadratic coefficient> may therefore be specified compactly as TC=<linear
coefficient>,<quadratic coefficient>.

Inductor Equations

Inductance Value Formula If [model name] is specified, then the inductance is given by:
Lpase - L- (1+TC1- (T —Ty) + TC2- (T — Tp)?)

where Ly, is the base inductance specified on the device line and is normally positive (though it can be
negative, but not zero). L is the inductance multiplier specified in the model card. Tj is the nominal
temperature (set using TNOM option).

190

2.3.6. Mutual Inductors

Symbol

3

Instance Form

K<name> L<inductor name> [L<inductor name>x]
+ <coupling value> [model name]

Model Form

.MODEL <model name> CORE [model parameters]

Examples

ktranl 11 12 13 1.0

KTUNED L30UT L4IN .8

KTRNSFRM LPRIMARY LSECNDRY 1
KXFRM L1 L2 L3 L4 .98 KPOT_3CS8

Parameters and
Options

inductor name
Identifies the inductors to be coupled. The inductors are coupled and in the
dot notation the dot is placed on the first node of each inductor. The polarity
is determined by the order of the nodes in the L devices and not by the order
of the inductors in the K statement.

If more than two inductors are given on a single K line, each inductor is
coupled to all of the others using the same coupling value.

coupling value
The coefficient of mutual coupling, which must be between —1.0 and 1.0.
This coefficient is defined by the equation

M;;

LL;

<coupling value>=

where
L; is the inductance of the ith named inductor in the K-line
M;; is the mutual inductance between L; and L;

For transformers of normal geometry, use 1.0 as the value. Values less than

1.0 occur in air core transformers when the coils do not completely overlap.
model name

If model name is present, four things change:

* The mutual coupling inductor becomes a nonlinear, magnetic core
device.

* The inductors become windings, so the number specifying inductance
now specifies the number of turns.

* The list of coupled inductors could be just one inductor.

191

* If two or more inductors are listed, each inductor is coupled to all others
through the magnetic core.

* A model statement is required to specify the model parameters.

Comments Lead currents and power calculations are supported for the component inductors in
both linear and nonlinear mutual inductors. They are not supported for the composite
mutual inductor though. So, if L1 is a component inductor for mutual inductor K1,
then requests for I (L1),P (L1) and W (L1) will return lead current and power
values as defined in Sectionlf_ﬁ} However, any usage of T (K1), P (K1) and
W (K1) will result in a Xyce netlist parsing error.

Table 2-40. Nonlinear Mutual Inductor Device Model Parameters

Parameter Description Units Default
A Thermal energy parameter A/m 1000
ALPHA Domain coupling parameter - 5e-05
AREA Mean magnetic cross-sectional area cm? 0.1
BETAH Modeling constant - 0.0001
BETAM Modeling constant - 3.125e-05
BHSIUNITS Flag to report B and H in SI units - 0

C Domain flexing parameter - 0.2

_— Value below which domain flexing parameter will be : 0.005
treated as zero.

Use constant scaling factor to smooth voltage

. . A% false
difference over first inductor

CONSTDELVSCALING

Smoothing coefficient for voltage difference over first

) A" 1000
inductor

DELVSCALING

Flag to factor the saturation magnetization from the
FACTORMS . . - 0
magnetics equation.

GAP Effective air gap cm 0
INCLUDEMEQU Flag to include the magnetics in the solution. - true
K Domain anisotropy parameter A/m 500
KIRR Domain anisotropy parameter A/m 500
LEVEL for pspice compatibility — ignored - 0
MEQNSCALING M-equation scaling - 1
MS Saturation magnetization A/m le+06
MVARSCALING M-variable scaling. - 1
OUTPUTSTATEVARS Flag to save state variables - 0
PACK for pspice compatibility — ignored - 0
PATH Total mean magnetic path cm 1
PZEROTOL Tolerance for nonlinear zero crossing - 0.1

192

Table 2-40. Nonlinear Mutual Inductor Device Model Parameters

Parameter Description Units Default
REQNSCALING R-equation scaling - 1
RVARSCALING R-variable scaling - 1

IC1 First order temperature coeff. - 0

TC2 Second order temperature coeff. - 0

TNOM Reference temperature °C 27

Model Parameters Note that Xyce’s default value for the GAP parameter as zero. Some simulators
will use non-zero values of the GAP as a default. When using netlists from other simulators in Xyce,
ensure that the default parameters are consistent.

Special Notes The coupling coefficient of the linear mutual inductor (i.e. a mutual inductor without a
core model) is permitted to be a time- or solution variable-dependent expression. This is intended to allow
simulation of electromechnical devices in which there might be moving coils that interact with fixed
coils.

Additionally, for linear mutual inductors, different coupling terms can be applied to different pairs of
inductors with this syntax:

L1 1 2 2.0e-3

L2 0 3 8.1e-3

L3 3 4 8.1e-3
ktranl 11 12 0.7
ktran2 12 13 0.9
ktran3 11 13 0.99

Nonlinear mutual inductors can output B(z) and H (¢) variables so that one can plot B— H loops. On the
.print line the B and H variables are accessible using the node output syntax as in n (
non—-linear—-inductor-name_b) forBandn(non-linear—-inductor—-name_h) for H.
A confusing aspect of this is that the non-linear inductor name is the internal name used by Xyce. For
example, consider this circuit which defines a nonlinear mutual inductor at both the top level of the circuit
and within a subcircuit:

* Test Circuit for Mutually Coupled Inductors

VS 0 1 SIN(O 169.7 60HZ)
R1 1 2 1K
R2 3 0 1K
L1 2 0 10
L2 3 0 20

K1 L1 L2 0.75 txmod
.model txmod core

193

.subckt mysub nl n2 n3
rls nl n2 1000

r2s n3 0 1000

Lls n2 0 10

L2s n3 0 20

kls Lls L2s 0.75 txmod
.ends

xtxs 1 4 5 mysub
.TRAN 100US 25MS

* output the current through each inductor and the B & H values.
.PRINT TRAN I(L1l) I(L2) n(ymin'!kl_b) n(ymin!kl_h)
+ I (xtxs:Lls) I(xtxs:12s) n(xtxs:ymin!kls_b) n(xtxs:ymin'kls_h)

.END

The internal, Xyce name of the non-linear mutual inductor is YMIN!K1 or ymin!k1 as the name is not
case-sensitive. The device k1 s is declared within a subcircuit called xt xs. Thus, its full name is
xtxs:ymin!k1s. The reason for this is that both the linear and non-linear mutual inductors are devices
that are collections of other devices, inductors in this case. Rather than use one of the few remaining single
characters left to signify a new device, Xyce uses Y devices as an indicator of a extended device set, where
the characters after the Y denote the device type and then the device name. Here, ymin means amin
device which is a mutual-inductor, non-linear device. Thus, to print the B or H variable of the non-linear
mutual inductor called k1 one would use n (ymin!k1l_b) and n (ymin!k1_h) respectively for a
.print line that looks like this:

.PRINT TRAN I(L1l) I(L2) n(ymin'!kl_b) n(ymin!kl_h)
And if the mutual inductor is in a subcircuit called xt xs then the . print line would look like this:
.PRINT TRAN I (xtxs:Lls) I(xtxs:12s) n(xtxs:ymin!kls_b) n(xtxs:ymin!kls_h)

The above example also demonstrates how one outputs the current through inductors that are part of mutual
inductors. The syntax is I (inductor name).

Note that while MKS units are used internally in Xyce, B and H are output by default in the SI units of
Gauss for B and Oersted for H. To convert B to units of Tesla divide Xyce’s output by 10,000. To convert
H to units of A/m divide Xyce’s output by 47/1000. Additionally, one can set the .model CORE
parameter BHSIUNITS to 1 to force B and H to be output in MKS units.

Finally, one can access the B and H data via the .model CORE line. On the nonlinear mutual inductor’s
.model line, set the option OUTPUTSTATEVARS=1. This will cause Xyce to create a unique file for each
nonlinear mutual inductor that uses this . model line with a name of the form Inductor_device_name.
There are five columns of data in this file: time (¢), magnetic moment (M), total current flux (R), flux
density (B) and magnetic field strength (H). As with data output on the .print line, SI units are used
such that B is output with units of Gauss and H in Oersted. As mentioned earlier, setting the model flag
BHSIUNITS to 1 causes the output of B and H uses MKS units of Tesla and A /m respectively.

194

Mutual Inductor Equations The voltage to current relationship for a set of linearly coupled inductors

18: N
dl;
Vi=) cijy /Ll-Ljd—tJ (2.3)
=1

J

Here, V; is the voltage drop across the ith inductor in the coupled set. The coupling coefficient between a
pair of inductors is ¢;; with a value typically near unity and L is the inductance of a given inductor which
has units of Henry’s (1 Henry = 1H = Volt - s/Amp)

For nonlinearly coupled inductors, the above equation is expanded to the form:

Vi= |1+ b P(M,I,...Iy) iL--ﬁ (2.4)
i = ; JA1.. AN “~ 0,/ dt .

t

This is similar in form to the linearly coupled inductor equation. However, the coupling has become more
complicated as it now depends on the magnetic moment created by the current flow, M. Additionally, there
are geometric factors, £, and /; which are the effective air gap and total mean magnetic path for the coupled
inductors. The matrix of terms, Lo;; is defined as

.uUAcMN J

. (2.5)

LO,‘ =
and it represents the physical coupling between inductors i and j. In this expression, N; is the number of
windings around the core of inductor i, L is the magnetic permeability of free space which has units of
Henries per meter and a value of 47t x 10~7 and A, is the mean magnetic cross-sectional area.

The magnetic moment, M is defined by:

M 1

N
dl;
— =_PY N 2.6
e ¢ l; dt (2:0)

and the function P is defined as:

M’ 1—c)M!
[C an + (Ci rr (2'7)
1+ (78 - a) Ml + 5 (1—)M,

rr

P=

If ¢ < CLIM, then c is treated as zero in the above equation and Xyce simplifies the formulation. In this
case, the magnetic-moment equation will not be needed and it will be be dropped form the formulation.
One can controll this behavior by modifying the value of CLIM.

The remaining functions are:

MA
M, = ——— 5 (2.8)
(A+|He|)
H = H+aM (2.9)
1
H = Hyp M (2.10)
t
1 N
Hup = 7 YN @2.11)
ti=1
v - AMsgn(q) +|AM| 2.12)
" 2 (Kirr — 0t|AM]) ‘

195

AM = My, —M (2.13)

MH,
My, = 2.14
q = DELVSCALINGAV (2.15)

Xyce dynamically modifies DELVSCALING to be 1000/ Maximum Voltage Drop over the first inductor.
This typically produces accurate results for both low voltage and high voltage applicaitons. However, it is
possible to use a fixed scaling by setting the model parameter CONSTDELVSCALING to true and then
setting DELVSCALING to the desired scaling value.

In Xyce’s formulation, we define R as:

dHapp _ 1 N dI

R= Ni— 2.16
¢ l; "dt (2.16)
This simplifies the M equation to:
M
— =PR 2.17
7 2.17)

Xyce then solves for the additional variables M and R when modeling a nonlinear mutual inductor
device.

B-H Loop Calculations To calculate B-H loops, H is used as defined above and B is a derived quantity
calculated by:

B = ug(H+M) (2.18)

—_ [Happ ; (1 - ig) M} (2.19)

Converting Nonlinear to Linear Inductor Models At times one may have a model for nonlinear
mutual inductor, but wish to use a simpler linear model in a given circuit. To convert a non-linear model to
an equivalent linear form, one can start by equating the coupling components of equations [2.3]and [2.4] as:

cijv/LiLj = [1 + (1 - %) P(M, I, ...IN)] Loy (2.20)

In the above relationship, i and j represent the ith and jth inductors. Since we would like to equate the ith
inductor’s nonliner properties to its linear properties, we will substitute i — j and simplify assuming steady
state where d/dt =0 and M (1) = 0.

Ms
! b A HAc o 2.21)

Li=—1+(1-2
i Cji (El) 1-{—(%-0{)@ gt !

A

In the above equatin, c;; represents the coupling coefficient between the ith inductor with itself. This will
likely be 1 unless there are very unusual geometry considerations. Note, that the terms A, Ms, A, i, £, and
¢; all have units of length within them and must use the same unit for this relationship to be valid.
Specifically, u has units of Henery’s per meter and A and M have units of Amps per meter. A., £, and £,

196

have units of length? and length respectively, but the length unit used in the model statement is cm? and cm
respectively. Thus, one must use consistent units such as meters for A., £, and £, in equation for a
valid inductance approximation.

197

2.3.7. Resistor

Symbol

/VV\,

Instance Form

R<name> < (+) node> < (-) node> [model name] [value]
[device parameters]

Model Form .MODEL <model name> R [model parameters]
.MODEL <model name> RES [model parameters]
Examples R1 1 2 2K TEMP=27

RM 4 5 R=4e3 M=2

RSOLDEP 2 0 R={1.0+scalar*V(1l)}
RLOAD 3 6 RTCMOD 4.540 TEMP=85
.MODEL RTCMOD R (TCl=.01 TC2=-.001)
RSEMICOND 2 O RMOD L=1000u W=1lu
.MODEL RMOD R (RSH=1)

Parameters and
Options

(+) node

(-) node
Polarity definition for a positive voltage across the resistor. The first node is
defined as positive. Therefore, the voltage across the component is the first
node voltage minus the second node voltage. Positive current flows from the
positive node (first node) to the negative node (second node).

model name
If [model name] is omitted, then [value] is the resistance in Ohms. If
[model name] is given then the resistance is determined from the model
parameters; see the resistance value formula below.

value
Positional specification of device parameter R (resistance). Alternately, this
can be specified as a parameter, R=<value>, or in the (optional) model.

device parameters
Parameters listed in Table [2-41{may be provided as space separated
<parameter>=<value> specifications as needed. Any number of
parameters may be specified.

Comments

Resistors can have either positive or negative resistance values (R). A zero resistance
value (R) is also allowed.

The power dissipated in the resistor is calculated with /- AV where the voltage drop is
calculated as (V; —V_) and positive current flows from V, to V_. The power
accessors (P () and W ()) are supported for both the level 1 resistor and the level 2
(thermal) resistor.

198

For compatibility with PSpice, either R or RES can be used in a . MODEL statement
for a resistor.

The Multiplicity Factor (M) can be used to specify multiple, identical resistors in
parallel. The effective resistance becomes R/M. The M value need not be an integer. It
can be any positive real number. M can not be used as a model parameter.

199

Table 2-41. Resistor Device Instance Parameters

Parameter Description Units Default

DTEMP PD;\;;&; t'Ie‘ertr?Sp;rgtF}lrssedFor compatibility only. °C 0

L Length m 0
Multiplicity Factor - 1

R Resistance Q 1000

TC1 Linear Temperature Coefficient ec! 0

TC2 Quadratic Temperature Coefficient °C—2 0

TCE Exponential Temperature Coefficient %/°C 0

TEMP Device temperature °C Ambient

Temperature
W Width m 0

Device Parameters In addition to the parameters shown in the table, the resistor supports a vector
parameter for the temperature correction coefficients. TC1=<linear coefficient> and
TC2=<quadratic coefficient> may therefore be specified compactly as TC=<linear
coefficient>,<quadratic coefficient>.

Table 2-42. Resistor Device Model Parameters

Parameter Description Units Default
DEFW Default Instance Width m le-05
NARROW Narrowing due to side etching m 0

R Resistance Multiplier - 1

RSH Sheet Resistance Q 0

TC1 Linear Temperature Coefficient ec! 0

TC2 Quadratic Temperature Coefficient °Cc—2 0

TCE Exponential Temperature Coefficient %/°C 0

TNOM Parameter Measurement Temperature °C ?emn?piz?atture

Model Parameters Note: There is no model parameter for Default Instance Length. The use of the
semiconductor resistor model requires the user to specify a non-zero value for the instance parameter L.

Resistor Equations

Resistance Value Formulas If the R parameter is given on the device instance line then that value is
used.

200

If the R parameter is not given then the semiconductor resistor model will be used if the L instance
parameter and the RSH model parameter are given and both are non-zero. In that case the resistance will
be as follows. (Note: If W is not given on the instance line then the value for the model parameter DEFW
will be used instead.)

[L — NARROW]|

RSH
[W —NARROW]

If neither of these two cases apply then the default value for the R parameter will be used.

Temperature Dependence If TCE is specified as either an instance or model parameter for the Level
1 resistor then the resistance at temperature 7" is given by (where the resistance at the nominal temperature
(Tp) was defined above in the resistance value formulas):

R pow(1.01,TCE- (T —Tp))

otherwise the resistance is given by:

R-(14+TC1-(T —Tp) +TC2- (T — Ty)?)

Thermal (level=2) Resistor Xyce supports a thermal resistor model, which is associated with
level=2.

Table 2-43. Resistor Device Instance Parameters

Parameter Description Units Default
A Area of conductor m? 0
DENSITY Resistor material density (unused) kg/m3 0
HEATCAPACITY Resistor material volumetric heat capacity J/(m’K) 0

L Length of conductor m 0

M Multiplicity Factor - 1
OUTPUTINTVARS Debug Output switch - false

R Resistance Q 1000
RESISTIVITY Resistor material resistivity Qm 0

TEMP Device temperature °C ?emn?;?;ture
THERMAL_A Area of material thermally coupled to conductor m? 0
THERMAL_HEATCAPACITY Zﬁ)lll;rlzztif;i;;;%imy of material thermally J/(m’K) 0
THERMAL_L Length of material thermally coupled to conductor m

W Width of conductor m

201

Thermal Resistor Instance Parameters

Table 2-44. Resistor Device Model Parameters

Parameter Description Units Default
DEFW Default Instance Width m le-05
DENSITY Resistor material density (unused) kg/m? 0
HEATCAPACITY Resistor material volumetric heat capacity J/(m’K) 0
NARROW Narrowing due to side etching m 0

R Resistance Multiplier - 1
RESISTIVITY Resistor material resistivity Qm 0

RSH Sheet Resistance Q 0

TC1 Linear Temperature Coefficient oc! 0

TC2 Quadratic Temperature Coefficient °Cc—2 0

TCE Exponential Temperature Coefficient %/°C 0
THERMAL_HEATCAPACITY Zgi;?;zti;cc};ﬁjfgmty of material thermally J/(m’K) 0

TNOM Nominal device temperature °C '?énmb;z?;ture

Thermal Resistor Model Parameters The temperature model for the thermal resistor will be enabled
if the A and L instance parameters are given and the parameters HEATCAPACITY and RESISTIVITY
are also given as a pair of either instance parameters or model parameters. Otherwise, the resistance value
and temperature dependence of the Level 2 resistor will follow the equations for the Level 1 resistor given
above, with the caveat that TCE is only allowed as a model parameter for the Level 2 resistor.

If the temperature model for the Level 2 resistor is enabled, then the resistance (R) is given by the

following, where the RESISTIVITY can be a temperature-dependent expression:

RESISTIVITY -L
A

The rate-of-change (d7 /dt) of the temperature (7') of the thermal resistor with time is then given by the
following where i is the current through the resistor:

io-ip'R
(A-L-HEATCAPACITY) + (THERMAL_A - THERMAL_L - THERMAL_HEATCAPACITY)

Solution-Dependent Resistor If the resistance (R) is set equal to an expression then a
“solution-dependent” resistor is used, where the resistor is a function of other simulation variables. The
formulas for temperature-dependence, given above, then use that calculated R value.

The restrictions for this solution dependent resistors are:

202

* The expression used for R must only use solution variables, which are node voltages and also branch
currents for source devices. It may not use device lead currents, which are post-processed quantities
that are not solution variables.

* The expression must not use time derivatives.

* Resistance (R) is the only instance or model parameters that are allowed to be solution-dependent.

203

2.3.8. Diode

Symbol D+

Instance Form D<name> < (+) node> <(-) node> <model name> [area value]
Model Form .MODEL <model name> D [model parameters]

Examples DCLAMP 1 0 DMOD

D2 15 17 SWITCH 1.5

Parameters and
Options (+) node
(=) node
The anode and the cathode.
area value
Scales IS, ISR, IKF, RS, CJO, and IBV, and has a default value of 1. IBV
and BV are both specified as positive values.

Comments The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic
diode. Positive current is current flowing from the anode through the diode to the
cathode.

The power through the diode is calculated with /- AV where the voltage drop is
calculated as (V4. —V_) and positive current flows from V. to V_. This formula may
differ from other simulators, such as HSPICE.

Diode Operating Temperature Model parameters can be assigned unique measurement temperatures
using the TNOM model parameter.

Diode level selection Three distinct implementations of the diode are available. These are selected by
using the LEVEL model parameter. The default implementation is based on SPICE 3F5, and may be
explicitly specified using LEVEL=1 in the model parameters, but is also selected if no LEVEL parameter is
specified. The PSpice implementation [2] is obtained by specifying LEVEL=2. The Xyce LEVEL=200
diode is the JUNCAP200 model. The Xyce LEVEL=2002 diode is the DIODE_CMC model version
2.0.0.

The Xyce LEVEL=1 and LEVEL=2 diodes have a parameter, IRF, that allows the user to adjust the reverse
current from the basic SPICE implementation. The usual SPICE treatment defines the linear portion of the
reverse current in terms of IS which is defined by the forward current characteristics. Data shows that often
the reverse current is quite far off when determined in this manner. The parameter IRF is a multiplier that
can be applied to adjust the linear portion of the reverse current. NOTE: The adjustment applied when
IRF is specified is not well validated and is known in some circumstances to cause non-physical
solution discontinuities and/or simulation failure. It is a deprecated feature as of Xyce 6.11, and may

204

be removed in a future release. If IRF is left unspecified, the diode reverts to being compatible with
the SPICE3FS5 diode model. If IRF is specified in the model card, even if the default value of 1.0 is
used in the specification, a temperature correction factor is applied that makes the device
incompatible with SPICE3F5’s model. For this reason, any specification of IRF in the model card
will result in a warning from versions of Xyce after 6.11.

205

Table 2-45. Diode Device Instance Parameters

Parameter Description Units Default
AREA Area scaling value (scales IS, ISR, IKF, RS, CJO, and 3 1
IBV)
IC - 0
L AMBERTI Optiqn to solve diode equations with the Lambert-W logical 0
function (T/F)
M multiplicity factor - 1
OFF Initial voltage drop across device set to zero g%li:c)al 0
TEMP Device temperature - Ambient
Temperature
Level 1 and 2 Diode Instance Parameters
Table 2-46. Diode Device Model Parameters
Parameter Description Units Default
AF Flicker noise exponent - 1
BV Reverse breakdown "knee" voltage A% 1e+99
CcJ Zero-bias p-n depletion capacitance F 0
CcJo Zero-bias p-n depletion capacitance F 0
CJo Zero-bias p-n depletion capacitance F 0
EG Bandgap voltage (barrier height) eV 1.11
FC Forward-bias depletion capacitance coefficient - 0.5
IBV Reverse breakdown "knee" current A 0.001
IBVL Low-level reverse breakdown "knee" current (level 2) A 0
IKF High-injection "knee" current (level 2) A 0
IRF Reverse current fitting factor - 1
IS Saturation current A le-14
ISR Recombination current parameter (level 2) A 0
Js Saturation current A le-14
KF Flicker noise coefficient - 0
M Grading parameter for p-n junction - 0.5
N Emission coefficient - 1
NBV Reverse breakdown ideality factor (level 2) - 1
NBVL Low-level reverse breakdown ideality factor (level 2) — 1
NR Emission coefficient for ISR (level 2) - 2
RS Parasitic resistance Q 0

206

Table 2-46. Diode Device Model Parameters

Parameter Description Units Default

TBV1 BV temperature coefficient (linear) (level 2) oc—1 0

TBV2 BV temperature coefficient (quadratic) (level 2) °Cc—2 0

TIKF IKF temperature coefficient (linear) (level 2) °c! 0

TNOM _ Ambient
Temperature

TRS1 RS temperature coefficient (linear) (level 2) oc—! 0

TRS2 RS temperature coefficient (quadratic) (level 2) °C2 0

TT Transit time S 0

VB Reverse breakdown "knee" voltage v 1e+99

vJ Potential for p-n junction v 1

XTI IS temperature exponent - 3

Level 1 and 2 Diode Model Parameters

JUNCAP200 (level=200) Parameters The JUNCAP200 model has the instance and model
parameters in the tables below. Complete documentation of JUNCAP200 may be found at http://www.
cea.fr/cea-tech/leti/pspsupport/Documents/juncap200p5_summary.pdfl

The JUNCAP200 device supports output of the internal variables in table 2-49on the . PRINT line of a
netlist. To access them from a print line, use the syntax N (<instance>:<variable>) where
“<instance>" refers to the name of the specific level 200 D device in your netlist.

Table 2-47. JUNCAP200 Diode Device Instance Parameters

Parameter Description Units Default
AB Junction area m? le-12
LG Gate-edge part of junction perimeter m? le-06
LS STI-edge part of junction perimeter m? le-06
M Alias for MULT — 1
MULT Number of devices in parallel — 1
Table 2-48. JUNCAP200 Diode Device Model Parameters
Parameter Description Units Default
CBBTBOT Band-to-band tunneling prefactor of bottom ANV le-12
component
CBBTGAT Band-to-band tunneling prefactor of gate-edge Am/V3 le-18
component
CBBTSTT Band-to-band tunneling prefactor of STI-edge Am/V3 le-18

component

207

http://www.cea.fr/cea-tech/leti/pspsupport/Documents/juncap200p5_summary.pdf
http://www.cea.fr/cea-tech/leti/pspsupport/Documents/juncap200p5_summary.pdf

Table 2-48. JUNCAP200 Diode Device Model Parameters

Parameter Description Units Default

CJORBOT Zero-bias capacitance per unit-of-area of bottom F/m2 0.001
component

CIORGAT Zero-bias capacitance per unit-of-length of gate-edge F/m 16-09
component

CIORSTT Zero-bias capacitance per unit-of-length of STI-edge F/m 16-09
component

CSRHBOT Shockley-Read-Hall prefactor of bottom component A/m? 100

CSRHGAT Shockley-Read-Hall prefactor of gate-edge A/m> 0.0001
component

CSRHSTI Shockley-Read-Hall prefactor of STI-edge component ~ A/m? 0.0001

CTATROT Trap-assisted tunneling prefactor of bottom A3 100
component

CTATGAT Trap-assisted tunneling prefactor of gate-edge A/m> 0.0001
component

CTATSTT Trap-assisted tunneling prefactor of STI-edge A/m> 0.0001
component

DTA Temperature offset with respect to ambient K 0
temperature
Normalization field at the reference temperature for _1

FBBTRBOT . Vm 1le+09
band-to-band tunneling of bottom component
Normalization field at the reference temperature for _1

FBBTRGAT . Vm 1e+09
band-to-band tunneling of gate-edge component

FBETRSTI Normalization field at the reference temperature for Vim-! 16409

band-to-band tunneling of STI-edge component

FJUNG Fraction below which junction capacitance 0.03
components are considered negligible '

FREV Coefficient for reverse breakdown current limitation — 1000
aturation current density at the reference
IDSATRBOT S y A/m? le-12
temperature of bottom component
ration current densi he referen
IDSATRGAT Saturation current density at the reference A/m le-18
temperature of gate-edge component
ration current densi he referen
IDSATRSTI Saturation current density at the reference A/m le-18
temperature of STI-edge component
Maximum current up to which forward current
IMAX P A 1000
behaves exponentially
LEVEL Model level must be 200 — 200
Effective m in units of mO) for trap-assi
MEFFTATBOT ective mass (in units of m0) for trap-assisted o 025

tunneling of bottom component

Effective mass (in units of m0) for trap-assisted
MEFFTATGAT . — 0.25
tunneling of gate-edge component

208

Table 2-48. JUNCAP200 Diode Device Model Parameters
Parameter Description Units Default

Effective mass (in units of m0) for trap-assisted
MEFFTATSTI . — 0.25
tunneling of STI-edge component

PBOT Grading coefficient of bottom component — 0.5
Breakdown onset tuning parameter of bottom

PBRBOT \" 4
component

DBRGAT Breakdown onset tuning parameter of gate-edge v 4
component

PBRSTI Breakdown onset tuning parameter of STI-edge v 4
component

PGAT Grading coefficient of gate-edge component — 0.5

PHTGROT Zero-temperature bandgap voltage of bottom v 116
component

PHIGGAT Zero-temperature bandgap voltage of gate-edge v 1.16
component

PHIGSTT Zero-temperature bandgap voltage of STI-edge v 116
component

PSTI Grading coefficient of STI-edge component — 0.5

STFBBTBOT Tempe'rature scaling parameter for band-to-band /K 0.001
tunneling of bottom component

STFBBTGAT Tempe'rature scaling parameter for band-to-band UK -0.001
tunneling of gate-edge component

STFBBTSTI Tempe.rature scaling parameter for band-to-band /K 20,001
tunneling of STI-edge component
Flag for JUNCAP-express; O=full model, 1=express

SWJUNEXP _ 0
model

TRJ Reference temperature °C 21

TYPE Type parameter, in output value 1 reflects n-type, -1 1
reflects p-type

VBIRBOT Built-in voltage at the reference temperature of v |
bottom component
Built-in voltage at the reference temperature of

VBIRGAT \" 1
gate-edge component
Built-in voltage at the reference temperature of

VBIRSTI \" 1
STI-edge component

VBRBOT Breakdown voltage of bottom component \Y% 10

VBRGAT Breakdown voltage of gate-edge component A% 10

VBRSTI Breakdown voltage of STI-edge component \" 10
Typical maximum junction voltage; usually about

VJUNREF 2¥VSUP A% 2.5

XJUNGAT Junction depth of gate-edge component m le-07

209

Table 2-48. JUNCAP200 Diode Device Model Parameters

Parameter Description Units Default
XJUNSTI Junction depth of STI-edge component m le-07
Table 2-49. Diode level 200 Output Variables

Parameter Description Units Default
vak Voltage between anode and cathode none
c] Total source junction capacitance F none
cjbot Junction capacitance (bottom component) F none
cjgat Junction capacitance (gate-edge component) F none
cjsti Junction capacitance (STI-edge component) F none
ij Total source junction current A none
ijbot Junction current (bottom component) A none
ijgat Junction current (gate-edge component) A none
ijsti Junction current (STI-edge component) A none
si Total junction current noise spectral density A*/Hz none
idsatsbot Total bottom saturation current A none
idsatssti Total STI-edge saturation current A none
idsatsgat Total gate-edge saturation current A none
cjosbot Total bottom capacity F none
cjossti Total STI-edge capacity F none
cjosgat Total gate-edge capacity F none
vbisbot built-in voltage of the bottom junction \" none
vbissti built-in voltage of the STI-edge junction v none
vbisgat built-in voltage of the gate-edge junction A% none

DIODE_CMC (level=2002) Parameters The DIODE_CMC model has the instance and model

parameters in the tables below. Complete documentation of DIODE_CMC may be found at
https://si2.org/standard-models.

The DIODE_CMC device supports output of the internal variables in table [2-52]on the . PRINT line of a

netlist. To access them from a print line, use the syntax N (<instance>:<variable>) where

“<instance>" refers to the name of the specific level 200 D device in your netlist.

Table 2-50. ADMS DIODE_CMC Device Instance Parameters

Parameter Description Units Default
AB Junction area - le-12
AREA Alias for AB - le-12

210

https://si2.org/standard-models

Table 2-50. ADMS DIODE_CMC Device Instance Parameters

Parameter Description Units Default
LG Gate-edge part of junction perimeter - 0

LS STI-edge part of junction perimeter - 1e-06
MULT Number of devices in parallel - 1
PERIM Alias for LS - 1e-06
PJ Alias for LS - le-06

Table 2-51. ADMS DIODE_CMC Device Model Parameters

Parameter Description Units Default

ABMAX maximum allowed junction area - 1

ABMIN minimum allowed junction area - 0

AF AF parameter for flicker noise - 1
Band-to-band tunneling prefactor of bottom

CBBTBOT - le-12
component

CBBTGAT Band-to-band tunneling prefactor of gate-edge _ le-18
component

CBBTSTI Band-to-band tunneling prefactor of STI-edge 3 le-18
component

CJORBOT Zero-bias capacitance per unit-of-area of bottom 3 0.001
component

CIORGAT Zero-bias capacitance per unit-of-length of gate-edge 1e-09
component

CIORSTT Zero-bias capacitance per unit-of-length of STl-edge 1e-09
component

CORECOVERY Flag for recovery equations; O=original, 1=Hiroshima — 0

CSRHBOT Shockley-Read-Hall prefactor of bottom component - 100

CSRHGAT Shockley-Read-Hall prefactor of gate-edge 3 0.0001
component

CSRHSTI Shockley-Read-Hall prefactor of STI-edge component — 0.0001

CTATBOT Trap-assisted tunneling prefactor of bottom _ 100
component

CTATGAT Trap-assisted tunneling prefactor of gate-edge _ 0.0001
component

CTATSTI Trap-assisted tunneling prefactor of STI-edge _ 0.0001
component

DEPNQS Depletion delay time - 0
Temperature offset with respect to ambient

DTA - 0
temperature

Normalization field at the reference temperature for
FBBTRBOT . — le+09
band-to-band tunneling of bottom component

211

Table 2-51. ADMS DIODE_CMC Device Model Parameters
Parameter Description Units Default

Normalization field at the reference temperature for
FBBTRGAT . - 1e+09
band-to-band tunneling of gate-edge component

FBBTRSTI Normalization field at the reference temperature for _ 1409
band-to-band tunneling of STI-edge component

FIUNQ Fraction below which junction capacitance 0.03
components are considered negligible)

FREV Additional parameter for current after breakdown - 1000

Saturation current density at the reference
IDSATRBOT - le-12
temperature of bottom component

Saturation current density at the reference
IDSATRGAT - le-18
temperature of gate-edge component

Saturation current density at the reference
IDSATRSTI - le-18
temperature of STI-edge component

Maximum current up to which forward current
IMAX . - 1000
behaves exponentially

INJ1 For carrier density - 1
INJ2 For carrier density in high-injection condition - 10
INJT Temp. co of carrier density in high-injection condition - 0
KF KF parameter for flicker noise - 0
LGMAX maximum allowed junction gate-edge - 1
LGMIN minimum allowed junction gate-edge - 0
LSMAX maximum allowed junction STI-edge - 1
LSMIN minimum allowed junction STI-edge - 0

Effective mass (in units of m0) for trap-assisted
MEFFTATBOT . - 0.25
tunneling of bottom component

Effective mass (in units of m0) for trap-assisted
MEFFTATGAT . - 0.25
tunneling of gate-edge component

Effective mass (in units of m0) for trap-assisted
MEFFTATSTI . - 0.25
tunneling of STI-edge component

NDIBOT Doping concentration of drift region - le+16
NDIGAT Doping concentration of drift region - le+16
NDISTI Doping concentration of drift region - le+16
NFABOT ideality factor bottom component - 1
NFAGAT ideality factor gate-edge component - 1
NFASTI ideality factor STI-edge component - 1
NJDV Transition slope of emission coefficient - 0.1
NJH High-injection emission coefficient - 1

NQS Carrier delay time - 5e-09
PBOT Grading coefficient of bottom component - 0.5

212

Table 2-51. ADMS DIODE_CMC Device Model Parameters

Parameter Description Units Default
Breakdown onset tuning parameter of bottom

PBRBOT - 4
component

PBRGAT Breakdown onset tuning parameter of gate-edge _ 4
component

PBRSTT Breakdown onset tuning parameter of STI-edge _ 4
component

PGAT Grading coefficient of gate-edge component - 0.5
Zero- 1 f

PHIGBOT ero-temperature bandgap voltage of bottom : 116
component
Zero- 1 f -

PHTGGAT ero-temperature bandgap voltage of gate-edge _ 116
component
Zero-temperature bandgap voltage of STI-edge

PHIGSTI p . gap v & & - 1.16
component

PSTI Grading coefficient of STI-edge component - 0.5

PT Alias for XTI -

REVISION Model revision - 0
Series resistance per unit-of-area of bottom

RSBOT - 0
component

RSCOM Common series resistance, no scaling - 0

RSGAT Series resistance per unit-of-length of gate-edge 3 0
component
Series resistance per unit-of-length of STI-edge

RSSTI — 0
component

SCALE Scale parameter - 1

SHRINK Scale parameter - 0

Temperature scaling parameter for band-to-band
STEBBTBOT . - -0.001
tunneling of bottom component

STFBBTGAT Tempe'rature scaling parameter for band-to-band 3 -0.001
tunneling of gate-edge component

Temperature scaling parameter for band-to-band

STFBBISTI tunneling of STI-edge component a -0.001
STRS Temperature scaling parameter for series resistance - 0
STVBRBOTL1 Temp. co of breakdown voltage bottom component - 0
STVBRBOT?2 Temp. co of breakdown voltage bottom component - 0
STVBRGAT1 Temp. co of breakdown voltage gate-edge component — — 0
STVBRGAT?2 Temp. co of breakdown voltage gate-edge component — 0
STVBRSTI1 Temp. co of breakdown voltage STI-edge component — 0
STVBRSTI2 Temp. co of breakdown voltage STI-edge component — — 0
SUBVERSION Model subversion - 0

213

Table 2-51. ADMS DIODE_CMC Device Model Parameters

Parameter Description Units Default

SWIUNEXD Flag for JUNCAP-express; O=full model, 1=express 0
model

TAU Carrier lifetime - 2e-07

TAUT Temp. co of carrier lifetime - 0

TEMPMAX maximum allowed junction temp - 155

TEMPMIN minimum allowed junction temp - -55

TNOM Alias reference temperature - 21

TRJ Reference temperature - 21

TT Transit time - 0

Type parameter, in output value 1 reflects n-type, -1

TYPE
reflects p-type

Built-in voltage at the reference temperature of
VBIRBOT - 1
bottom component

Built-in voltage at the reference temperature of
VBIRGAT - 1
gate-edge component

Built-in voltage at the reference temperature of
VBIRSTI — 1
STI-edge component

VBRBOT Breakdown voltage of bottom component - 10
VBRGAT Breakdown voltage of gate-edge component - 10
VBRSTI Breakdown voltage of STI-edge component - 10
VERSION Model version -

VFMAX maximum allowed forward junction bias - 0
VJUNREF ;Z%;ij Ir)na)(lmum junction voltage; usually about _ 25
VRMAX maximum allowed reverse junction bias - 0

WI Length of drift region - 5e-06
XJUNGAT Junction depth of gate-edge component - le-07
XJUNSTI Junction depth of STI-edge component - le-07
XTI Temp. co of saturation current - 3

Table 2-52. Diode level 2002 Output Variables

Parameter Description Units Default
Voltage between anode and cathode excluding the

vak . . none
series resistor

c Total source junction capacitance - none

cjbot Junction capacitance (bottom component) - none

cjgat Junction capacitance (gate-edge component) - none

214

Table 2-52. Diode level 2002 Output Variables

Parameter Description Units Default
cjsti Junction capacitance (STI-edge component) - none
ij Total source junction current - none
ijbot Junction current (bottom component) - none
ijgat Junction current (gate-edge component) - none
ijsti Junction current (STI-edge component) - none
si Total junction current noise spectral density - none
vrs Voltage across series resistor - none
st Total junction flicker noise spectral density - none
sSr Total series resistor thermal noise spectral density - none
rseries Series resistor - none
grr Recovery charge - none

Level 1 Diode Equations The equations in this section use the following variables:

Vai = voltage across the intrinsic diode only
Vin = k-T/q (thermal voltage)

k = Boltzmann’s constant
q = electron charge
T = analysis temperature (Kelvin)
Ty = nominal temperature (set using TNOM option)

® = Frequency (Hz)

Other variables are listed above in the diode model parameters.

Level=1 The level 1 diode is based on the Spice3f5 level 1 model.

DC Current (Level=1) The intrinsic diode current consists of forward and reverse bias regions where

IS- [exp (;g;) - 1} , Vi > —3.0-NVyy
Ip = 3
IS - tIRF - [1.0+ (%) } , Vi < —3.0-NVy,
rp — { IRE: (TEMP/TNOM)'S, if IRF specified
1 1.0 if IRF not specified

IRF is a Xyce-specific parameter that can be used to scale the reverse-biased current to match measured
data. It defaults to 1.0, which reduces the model to strict SPICE3F5 compatibility. NOTE: The
expressions involving IRF have not been validated, and use of IRF is deprecated. Setting IRF to any
value may introduce non-physical solution discontinuities or simulation failures at higher

215

temperatures. This feature may be removed in a future release, and should not be used. Any setting
of IRF in the model card (even setting it to the default of 1.0) will result in a warning from the diode
device. Strict SPICE3F5 compatibility is only maintained by leaving this parameter out of any model
cards for diodes.

When BV and an optional parameter IBV are explicitly given in the model statement, an exponential model
is used to model reverse breakdown (with a “knee” current of IBV at a “knee-on” voltage of BV). The
equation for Ip implemented by Xyce is given by

Vii < BVeit,

BV 4V,
Ip = —IBVg-exp <—"“+"> :

NVin
where BV g and IBV g are chosen to satisfy the following constraints:

1. Continuity of Ip between reverse bias and reverse breakdown regions (i.e., continuity of I at

Vii = —BVegp): X
3.0-NV,,
IBV s =IRF -1 11— —————
eff S (< .. BVeff >)

2. “Knee-on” voltage/current matching:

BV — BV

IBVg - exp <— NV,
t

> =1IBV

Substituting the first expression into the second yields a single constraint on BV which cannot be solved
for directly. By performing some basic algebraic manipulation and rearranging terms, the problem of
finding B Vg which satisfies the above two constraints can be cast as finding the (unique) solution of the
equation

BVt = f(BVegr), (2.22)

where f(-) is the function that is obtained by solving for the BV g term which appears in the exponential in
terms of BV and the other parameters. Xyce solves Eqn. [2.22] by performing the so-called Picard
Iteration procedure [12], i.e. by producing successive estimates of BV¢g (Which we will denote as BVeffk)
according to

BVefkarl =f (BVeffk)

starting with an initial guess of BV = BV. The current iteration procedure implemented in Xyce can be
shown to guarantee at least six significant digits of accuracy between the numerical estimate of BV g and
the true value.

In addition to the above, Xyce also requires that BV lie in the range BV > BV > 3.0NV;;,. In terms of
IBYV, this is equivalent to enforcing the following two constraints:

3.0-NV,, \°
IRF-IS|{1— [———— < IBV 2.23
((e-BV >> - ()
-3.0- B
IRF-IS(l—e—3)exp(Sl V) > 1BV (224
th

Xyce first checks the value of IBV to ensure that the above two constraints are satisfied. If Eqn. [2.23]is
violated, Xyce sets IBV 4 to be equal to the left-hand side of Eqn. [2.23]and, correspondingly, sets BV to
—3.0-NVj;,. If Eqn. [2.24]is violated, Xyce sets IBV ¢ to be equal to the left-hand side of Eqn.[2.24]and,
correspondingly, sets BV to BV.

216

Capacitance (Level=1) The p-n diode capacitance consists of a depletion layer capacitance C; and a
diffusion capacitance Cy;r. The first is given by

CJ-AREA (1_Ya) " <FC
yoarea (1-5) ™" v ke

Ci=
%@HM%), Vi >FC-VJ]

The diffusion capacitance (sometimes referred to as the transit time capacitance) is

dlp
dVy;

Ciif = TTG, =TT

where G is the junction conductance.

Temperature Effects (Level=1) The diode model contains explicit temperature dependencies in the
ideal diode current, the generation/recombination current and the breakdown current. Further temperature
dependencies are present in the diode model via the saturation current /g, the depletion layer junction
capacitance CJ, the junction potential V;.

kT
V(T) = =
(T) p
KTNOM
thom(T) -
q
E(T) = E _LTZ
8 T T LT
o TNOM?
FavoulT) = £~ anoM+ B
_ E(T) | Egoo
argl(T) = ——7 2T,
_ Egvom(T) Egoo
arg2(T) = —5rNoM T 2T,
T
pbfact1(T) = —2.0-Vi(T) (1.5-ln<T>+q~argl(T)>
0
TNOM
pbfact2(T) = —2.0Vipom(T) <1.5-ln< NO)—l—q-argZ(T))
bo(T) = (VI—pbfacr2(T)) =2
poott) = pojac TNOM
T
Vi(T) = pbfactl(T)—i-?pbo(T)
0
VI —pbo(T)
gmay(T) = bo(T)
V;(T) — pbo(T)
new T = T g
1.0+M (4.0 x 104 (T — Tp)) — gmanen(T

1.0+ M (4.0 x 10~4 (TNOM — T) — gmayq(T))

T EG XTI T
IK(T) = IS. ~1.0)- 1
s(T) S eXp<<TN0M O) NV(T) TN n<TNOM>>

217

where, for silicon, o = 7.02 x 10~* eV /K, B = 1108 K and E,=1.16€V.

For a more thorough description of p-n junction physics, see [9]. For a thorough description of the U.C.
Berkeley SPICE models see Reference [11].

218

2.3.9. Independent Current Source

Symbol

Instance Form

I<name> < (+) node> <(-) node> [[DC] <value>]
+ [AC [magnitude value [phase value]]] [transient

specification]

Examples

ISILOW 1 22 SIN(0.5 1.0ma 1KHz 1ms)
IPULSE 1 3 PULSE(-1 1 2ns 2ns 2ns 50ns 100ns)
IPAT 2 4 PAT(5 0 0 1n 2n 5n b0101)

Parameters and
Options

transient specification
There are five predefined time-varying functions for sources:

PULSE <parameters> Pulse waveform

SIN <parameters> Sinusoidal waveform

EXP <parameters> Exponential waveform
PAT <parameters> Pattern waveform

PWL <parameters> Piecewise linear waveform

SFFM <parameters> Frequency-modulated waveform

Comments

Positive current flows from the positive node through the source to the negative node.

The power supplied or dissipated by the current source is calculated with /- AV where
the voltage drop is calculated as (V. — V_) and positive current flows from V, to V_.
Dissipated power has a positive sign, while supplied power has a negative sign.

The default value is zero for the DC, AC, and transient values. None, any, or all of the
DC, AC, and transient values can be specified. The AC phase value is in degrees.

Transient Specifications This section outlines the available transient specifications. At and T are the
time step size and simulation end-time, respectively. Parameters marked as — must have a value specified
for them; otherwise a netlist parsing error will occur.

Pulse

PULSE (V1 V2 TD TR TF PW PER)

219

Table 2-53. Pulse Parameters

Parameter Description Units Default
V1 Initial Value amp -

V2 Pulse Value amp 0.0

D Delay Time S 0.0

TR Rise Time S At

TF Fall Time s At

PW Pulse Width S Tr

PER Period S Tr

Sine

SIN(VO VA FREQ TD THETA PHASE)

Table 2-54. Sine Parameters

Parameter Description Units Default
Vo0 Offset amp -

VA Amplitude amp -

FREQ Frequency s -

D Delay S At
THETA Attenuation Factor s At
PHASE Phase degrees 0.0

The waveform is shaped according to the following equations, where ¢ = 7« PHASE /180 :

7— Vo, 0<t<Tp
“\ Vo+Vasin[27m - FREQ- (t — Tp) + ¢]exp|—(t — Tp) - THETA], Tp <1< T

Exponent

EXP (V1 V2 TD1 TAUl TDZ2Z TAU2)

Table 2-55. Exponent Parameters

Parameter Description Units Default
V1 Initial Amplitude amp -

V2 Amplitude amp -

TD1 Rise Delay Time s 0.0
TAUl Rise Time Constant s At

220

Table 2-55. Exponent Parameters

Parameter Description Units Default
TD2 Delay Fall Time S TD1 +At
TAU2 Fall Time Constant S At

The waveform is shaped according to the following equations:

Vi, 0<t<TDI1
Vi + (Va—V1){1 —exp[—(r — TD1)/TAU1]}, TDI < < TD2
Vi+ (Va—Vi){l —exp[—(r— TD1)/TAUI]|}

+(Vi —=Vo){1 —exp[—(t —TD2)/TAU2|}, TD2<t<T,

Pattern

PAT (VHI VLO TD TR TF TSAMPLE DATA R)

Table 2-56. Pattern Parameters

Parameter Description Units Default
VHI High Value amp -
VLO Low Value amp -
D Delay Time s -
TR Rise Time s -
TF Fall Time S -
TSAMPLE Bit period S -
DATA Bit pattern - -
R Repeat - 0

The VHI, VLO, TD, TF, TF TSAMPLE and DATA parameters are all required, and hence have no default
values. Negative values for TD are supported. The R parameter is optional. For its default value of 0, the
requested bit pattern will occur once.

The DATA parameter is the requested bit-pattern. Only the 0’ and ‘1’ states are supported. The ‘M’ and ‘2’
states are not supported. The DATA field should have a leading ‘b’ (or ‘B’) character (e.g., be specified as
‘b0101”).

For times earlier than TD, the waveform value is set by the first bit in DATA. For times after the end of the
(possibly repeated) pattern, the waveform value is set by the last bit in DATA. Piecewise linear interpolation
is used to generate the output value when transitioning between states.

The VHI, VLO, TD, TF, TF and TSAMPLE parameters are compatible with . STEP. The DATA and R
parameters are not.

The HSPICE parameters RB, ENCODE and RD_INIT, for the pattern source, are not supported.

221

Piecewise Linear

PWL TO VO [Tn Vn]=*
PWL FILE "<name>" [TD=<timeDelay>] [R=<repeatTime>]

Table 2-57. Piecewise Linear Parameters

Parameter Description Units Default
Th Time at Corner S none
Vi Current at Corner amp none
D Time Delay S 0

R Repeat Time S none

When the FILE option is given, Xyce will read the corner points from the file specified in the <name>
field. This file should be a plain ASCII text file (or a .CSV file) with the time/current pairs. There should be
one pair per line, and the time and current values should be separated by whitespace or commas. As an
example, the file specified (e.g., ipwl.csv) could have these five lines:

0.00, 0.00
2.00, 3.00
3.00, 2.00
4.00, 2.00
4.01, 5.00

The corresponding example instance lines would be:

IPWL1 1 0 PWL 0S OA 2S 3A 3S 2A 4S 2A 4.01s 5A
IPWL2 2 0 PWL FILE "ipwl.txt"

IPWL3 3 0 PWL file "ipwl.csv"

IPWL4 4 0 PWL FILE ipwl.csv

The double quotes around the file name are optional, as shown above.

It is a best practice to specify all of the time-current pairs in the PWL specification. However, for
compatibility with HSPICE and PSpice, if the user-specified list of time/current pairs omits the pair at
time=0 as the first pair in the list then Xyce will insert a pair at time=0 with the current value at the first
user-specified time value. As an example, this user-specified list:

25 3A 3S 2A 4s 2A 4.01S 5A

would be implemented in Xyce as follows:

0S 3A 2S 3A 38 2A 4s 2A 4.01s 5A

222

TD has units of seconds, and specifies the length of time to delay the start of PWL waveform. The default
is to have no delay, and TD is an optional parameter.

The Repeat Time (R) is an optional parameter. If R is omitted then the waveform will not repeat. If R is
included then the waveform will repeat until the end of the simulation. As examples, R=0 means repeat the
PWL waveform from time=0 to the last time (Tx) specified in the waveform specification. (This would use
the time points Os, 2s, 3s, 4s and 4.01s for the example waveform given above.). In general,
R=<repeatTime> means repeat the waveform from time equal to <repeat Time> seconds in the
waveform specification to the last time (Ty) specified in the waveform specification. So, the
<repeatTime> must be greater than or equal to 0 and less than the last time point (Ty). If the R
parameter is used then it must have a value.

The specification PWL FILE "<name>" R isillegal in Xyce as a shorthand for R=0. Also, the Xyce
syntax for PWL sources is not compatible with the PSpice REPEAT syntax for PWL sources. See section
for more details.

The repeat time (R) does enable the specification of discontinuous piecewise linear waveforms. For
example, this waveform is a legal Xyce syntax.

IPWL1 1 O PWL O0S OA 2s 3A 35S 2A 4S5 2A 4.01S 5A R=2

However, in general, discontinuous source waveforms may cause convergence problems.

Frequency Modulated

SFFM (VO VA FC MDI FS)

Table 2-58. Frequency Modulated Parameters

Parameter Description Units Default
VO Offset amp -

VA Amplitude amp -

FC Carrier Frequency hertz 1/TSTOP
MDI Modulation Index - 0

FS Signal Frequency hertz 1/TSTOP

TSTOP is the final time, as entered into the transient (. TRANS) command. The waveform is shaped
according to the following equation:

I =Vy+V,-sin(2w-FC-TIME +MDI - sin(27 - FS - TIME))

where TIME is the current simulation time.

223

2.3.10. Independent Voltage Source

Symbol

Instance Form

V<name> < (+) node> <(-) node> [[DC] <value>]
+ [AC [magnitude value [phase value]]] [transient

specification]

Examples

VSLOW 1 22 SIN(0.5 1.0mV 1KHz 1ms)
VPULSE 1 3 PULSE(-1 1 2ns 2ns 2ns 50ns 100ns)
VPAT 2 4 PAT(5 0 0 1n 2n 5n b0101)

Parameters and
Options

transient specification
There are five predefined time-varying functions for sources:

PULSE <parameters> Pulse waveform

SIN <parameters> Sinusoidal waveform

EXP <parameters> Exponential waveform
PAT <parameters> Pattern waveform

PWL <parameters> Piecewise linear waveform

SFFM <parameters> Frequency-modulated waveform

Comments

Positive current flows from the positive node through the source to the negative node.

The power supplied or dissipated by the voltage source is calculated with /- AV where
the voltage drop is calculated as (V. — V_) and positive current flows from V, to V_.
Dissipated power has a positive sign, while supplied power has a negative sign.

None, any, or all of the DC, AC, and transient values can be specified. The AC phase

value is in degrees.

Transient Specifications This section outlines the available transient specifications. At and T are the
time step size and simulation end-time, respectively. Parameters marked as — must have a value specified
for them; otherwise a netlist parsing error will occur.

Pulse

PULSE (V1 V2 TD TR TF PW PER)

224

Table 2-59. Pulse Parameters

Parameter Description Units Default
V1 Initial Value Volt -

V2 Pulse Value Volt 0.0

D Delay Time S 0.0

TR Rise Time S At

TF Fall Time s At

PW Pulse Width S Tr

PER Period S Tr

Sine

SIN(VO VA FREQ TD THETA PHASE)

Table 2-60. Sine Parameters

Parameter Description Units Default
Vo0 Offset Volt -

VA Amplitude Volt -

FREQ Frequency s -

D Delay S At
THETA Attenuation Factor s At
PHASE Phase degrees 0.0

The waveform is shaped according to the following equations, where ¢ = 7« PHASE /180 :

V= Vo, 0<t<Tp
~\ Vo+Vasin[27 - FREQ- (t — Tp) + ¢]exp|—(t — Tp) - THETA], Tp <1< T

Exponent

EXP (V1 V2 TD1 TAUl TDZ2Z TAU2)

Table 2-61. Exponent Parameters

Parameter Description Units Default
V1 Initial Amplitude Volt -

V2 Amplitude Volt -

TD1 Rise Delay Time s 0.0
TAUl Rise Time Constant s At

225

Table 2-61. Exponent Parameters

Parameter Description Units Default
TD2 Delay Fall Time S TD1 +At
TAU2 Fall Time Constant S At

The waveform is shaped according to the following equations:

Vi, 0<t<TDI1
Vi+ (Vo —V1){1 —exp[—(—TD1)/TAU1]}, TDI1 < < TD2
Vi+ (Vo —V;){1 —exp[— (¢ — TD1)/TAU1]}

+(Vi =Wo){1 —exp[—(r —TD2)/TAU2]}, TD2<:<T)

Pattern

PAT (VHI VLO TD TR TF TSAMPLE DATA R)

Table 2-62. Pattern Parameters

Parameter Description Units Default
VHI High Value Volt -
VLO Low Value Volt -
D Delay Time s -
TR Rise Time s -
TF Fall Time S -
TSAMPLE Bit period S -
DATA Bit pattern - -
R Repeat - 0

The VHI, VLO, TD, TF, TF TSAMPLE and DATA parameters are all required, and hence have no default
values. Negative values for TD are supported. The R parameter is optional. For its default value of 0, the
requested bit pattern will occur once.

The DATA parameter is the requested bit-pattern. Only the 0’ and ‘1’ states are supported. The ‘M’ and ‘Z’
states are not supported. The DATA field should have a leading ‘b’ (or ‘B’) character (e.g., be specified as
‘b0101”).

For times earlier than TD, the waveform value is set by the first bit in DATA. For times after the end of the
(possibly repeated) pattern, the waveform value is set by the last bit in DATA. Piecewise linear interpolation
is used to generate the output value when transitioning between states.

The relationship between the various source parameters can be illustrated with the following example:

VI 10PAT(00 In 1n 5n b010)

226

That V1 source definition would produce time-voltages pairs at (0 0) (4.5ns 0) (5ns 2.5) (5.5ns 5.0) (9.5ns
5.0) (10ns 2.5) (10.5ns 0). So, the bit period is Sns and the voltage value at the start/end of each “sample” is
equal to 0.5*(VHI + VLO). The first rise is centered around t=5ns, and hence starts at t=4.5ns and ends at
t=5.5 ns.

The VHI, VLO, TD, TF, TF and TSAMPLE parameters are compatible with . STEP. The DATA and R
parameters are not.

The HSPICE parameters RB, ENCODE and RD_INIT, for the pattern source, are not supported.

Piecewise Linear

PWL TO VO [Tn Vn]=*
PWL FILE "<name>" [TD=<timeDelay>] [R=<repeatTime>]

Table 2-63. Piecewise Linear Parameters

Parameter Description Units Default
Th Time at Corner S none
Vp Voltage at Corner Volt none
D Time Delay S 0

R Repeat Time S none

When the FILE option is given, Xyce will read the corner points from the file specified in the <name>
field. This file should be a plain ASCII text file (or a .CSV file) with time/voltage pairs. There should be
one pair per line, and the time and voltage values should be separated by whitespace or commas. As an
example, the file specified (e.g., vpwl . csv) could have these five lines:

0.00, 0.00
2.00, 3.00
3.00, 2.00
4.00, 2.00
4.01, 5.00

The corresponding example instance lines would be:

VPWL1 1 0 PWL 0S OV 2S 3V 3S 2V 4S5 2V 4.01s 5V
VPWL2 2 0 PWL FILE "vpwl.txt"

VPWL3 3 0 PWL file "vpwl.csv"

VPWL4 4 0 PWL FILE vpwl.csv

The double quotes around the file name are optional, as shown above.

It is a best practice to specify all of the time-voltage pairs in the PWL specification. However, for
compatibility with HSPICE and PSpice, if the user-specified list of time/voltage pairs omits the pair at
time=0 as the first pair in the list then Xyce will insert a pair at time=0 with the voltage value at the first
user-specified time value. As an example, this user-specified list:

227

25 3V 35 2V 4s 2v 4.01s 5V
would be implemented in Xyce as follows:
0S 3v 2SS 3v 38 2V 45 2v 4.01s 5V

TD has units of seconds, and specifies the length of time to delay the start of PWL waveform. The default
is to have no delay, and TD is an optional parameter.

The Repeat Time (R) is an optional parameter. If R is omitted then the waveform will not repeat. If R is
included then the waveform will repeat until the end of the simulation. As examples, R=0 means repeat the
PWL waveform from time=0 to the last time (Tx) specified in the waveform specification. (This would use
the time points Os, 2s, 3s, 4s and 4.01s for the example waveform given above.) In general,
R=<repeatTime> means repeat the waveform from time equal to <repeat Time> seconds in the
waveform specification to the last time (Ty) specified in the waveform specification. So, the
<repeatTime> must be greater than or equal to 0 and less than the last time point (Ty). If the R
parameter is used then it must have a value.

The specification PWL FILE "<name>" R isillegal in Xyce as a shorthand for R=0. Also, the Xyce

syntax for PWL sources is not compatible with the PSpice REPEAT syntax for PWL sources. See section
6.1.12 for more details.

The repeat time (R) does enable the specification of discontinuous piecewise linear waveforms. For
example, this waveform is a legal Xyce syntax.

VPWL1 1 0 PWL 0S OV 2SS 3V 3S 2V 45 2V 4.